Advanced TODFT I:

Memory and Initial-State Dependence

... when the adiabatic approximation commits a crime ...
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| Plan |

— introduction to what is memory and some general properties
-- initial-state dependence
-- history-dependence

-- “gedanken” calculation of electronic quantum control

See also Ch. 8 in your “Fundamentals of TDDFT” book



Memory

Wy

Runge-Gross: n(rt)- 1 (1) > Vi fté)system
D

n(rt) - 1_2 > V (IKB system

Hartree is naturally adiabatic
/ — depends only on
instantaneous density

(r't
ve[n; Dol (rt) = vext(rt) + /d3r'|7;(i 1?| + v, (rt)

/ /

Actually, v, [n,W,] ()

. . functional dependence on
but as v, is usually prescribed,

functional dependence not considered. history, n(r t’<¢), and on initial
states of true and KS systems

W, : the true initial state

(I)O: the initial state to start the KS calculation in -- essentially any (SSD) that has
same n(r,0) and n(r,0) as ‘PO (R. van Leeuwen PRL 82, 3863 (1999) )



Memory
W b ]T functional dependence on history, n(r t’<t),
Uxellty %70, HP0JATT and on initial states of true and KS systems

/

* Also, for general observable A[n; @]

 Memory can be thought to arise from using a reduced variable, n(r,t),
which traces over N-1 spatial variables - memory-dependence.

*But almost all calculations ignore this, and use an adiabatic approximation:
Ar .
vii[n; Wo, Dol (rt) = v [n(rt)]

e.g. vALPA(1t) = LA (rt)] = & lese (n(rt))
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Now, will play with some examples, clarify what is meant by
memory, and uncover some exact properties of memory-
dependence.

Let’s start with initial-state dependence.



Initial-state dependence (ISD)

The 1-1 n-v mapping formally depends on the initial-state.

Uxe[M; (rt) Vext L1, o) (rt) ve[n; @o](rt)

But is there ISD in actuality? If we start in different W,'s, can we get the
same n(r t), for all t, by evolving in different potential?

l.e.
Evolve ¥, inv(t) 2 1 n (1) The answer is:

No! for one electron,
but,

‘ Yes! for 2 or more
t electrons

? EvoIveTI’0 inv (t) > samen ?

If no, then ISD redundant, i.e. the functional dependence on the density is
enough.



ISD? One electron case:

Can L,O(T, t) and \,3’5(?“ t) be found, that evolve with the same density for all ¢ ?

means \;’(T‘ t) _ ’-”(?"? t)eia(r,t)

where a is a real phase

O—7z¢(r t) —na(r.t) = V- [n(r,t)Va(r,t)]
/

using eqgn of contlnmty n(r,t) =-V-j(r,t)
WO 1) = Se(r 0 () — o, )V (r )]

miﬂﬁﬂmﬂVﬁmwwmﬁm:—f&QWwMMwﬁB+MM

~ | term
evewwhere non-negatlve

—

> Va(r,t) =0 > @ and O differ only by irrelevant t-dep phase



So, for one electron:

Evolve ¥, in v(t) 2 . i,

Evolve ¥, in V(t)//same n

No ISD needed in functionals since the time-
evolving density itself contains the information

about the initial state.

N.T. Maitra and K. Burke, Phys. Rev. A. 63 042501 (2001); ibid. 64 039901 (E) (2001)



More than one electron:

The time-evolving density does nof uniquely define the potential

1
Example: |

two non-interacting

—— ¢4,0, orbitals of @
electrons in 1d

........ 91,9, Orbitals of

The initial KS potentials in
which these two different

initial-states evolve with I ~ ]
the same n 5

« Say this is the density of an interacting system. Both are possible KS systems.

> v, different for each. Cannot be captured by any adiabatic approximation

N.T. Maitra and K. Burke, Phys. Rev. A. 63 042501 (2001); ibid. 64 039901 (E) (2001)



More than one electron: ISD in Floquet states

Reference system:
I,

V= — iy - Jxsi
5 WX~ + Avsin(we)

i “S
4\m P2
04,9, are lowest Floquet  ®® an
orbitals (top panel);

n their density

Alternate system:

Re and o 92 05
Same n, but with a doubly- 0’

43

occupied Floquet orbital
(middle panel), living in v

« Say this is the density of an interacting
system. Both are possible KS systems, and

Vs Vs = Ve “Vxc
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Another 2-e non-interacting example:

gT/4

]

T

]
>V, different for each. Cannot be captured by any adiabatic approximation

0 x

!
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Floquet DFT: No 1-1 mapping between densities and time-periodic potentials — need

ISD

N.T. Maitra & K. Burke, Chem. Phys. Lett. 389, 237 (2002); ibid. 441, 167 (2007)



« So initial-state-dependence is important for 2 or more electrons

» Special case of much practical interest: start in a ground-state.

Then, by the Hohenberg-Kohn thm, W, = ¥,[n(0)] and ®,= ®,[n(0)]

-- no explicit ISD needed!

 But there’s still history-dependence, and we’'ll look at this now for the
two-electron case, starting in ground-state:

KS gs is doubly-occupied spatial orbital, ¢,(r)



History-dependence: studying it via numerically solvable
2-electron systems

If somehow we can solve the many-electron problem exactly, can we find the
exact xc potential, and study its features?

Two electrons in spin-singlet

Assume n(rt) known. What is v,? —
n\r,t

The KS orbital is doubly-occupied, & of form: (ﬂ(?,f)= exp(ia(?,t))
Substitute into TDKS eqn 0, ¢ (1. 1) = (—=V?/2 + vg(r. 1)) (v, 1)

and invert to get:

1 Vin 1 |Vn]? 1 . da n(r't
S ——| ,,| ——|T|:r' = lext(lt)‘}‘/ d>r’ (t) +l><((1t)
4 n 8 n- 2 dt r—1’

where a is determined by eqn of continuity, V, = -v/2
T T.:J:‘I‘ Tt]: T}j+—— 0

n or




History-dependence in 2 e systems

We found for two electrons in spin-singlet:

1 Vin Vn n(r't
p,=——— | | text(lt)—l-/d?’ /) -I—'vxc(rt)
4 n Ir — 1/

non-adiabatic (memory)

where a is determined by eqn of continuity, V, = -V /2
V- Tr:r+ Tcr Vaun+——=0

H Jt

V, appears not very non-local in time then — depends only on n,0n/ dt, 0°n/ot>

But it is not V; that we need approximate — it is V., because V., is given in
practise by the problem at hand.

In fact V, . does depend very non-locally in time on the density, in general,
and this is what we will now look at...



Two-electron example of history-dependence

Ve[ Wo, Do) (rt)

n(rt’), t' <t
2 electrons in parabolic well,
time-varying force constant

Eg. Time-dependent Hooke’s atom —exactly
numerically solvable T~

— 4
| - k(t) =0.25 — 0.1*c0s(0.75 1)
parametrizes =
density

0.04¢

/ Pra(rt)ve(rt)

-0.04

Any adiabatic (or
even semi-local-in-
time) approximation
would incorrectly
predict the same v,
at both times.

Ec(t)
T

0 5 10 15 20 25130 35 40
[4
Time-slices where n(t) is locally and semi-locally identical but v, is quite
distinct = v, is generally a very non-local functional in time of the density
See also examples in Carsten’s talk!

P. Hessler, N.T. Maitra, K. Burke, J. Chem. Phys, 117, 72 (2002)



Other Explorations of Memory-Dependence in Real-Time

- First exploration of memory-dependence in real-time, using 2e in 2D
parabolic well, I. d’Amico & G. Vignale, PRB 59, 7876 (1999).

- Demonstrating memory in VUC for charge-density oscillations in quantum
wells, H.O. Wijewardane and C.A. Ullrich, Phys. Rev. Lett. 95, 086401 (2005)

« Comparing exact, ALDA, and VK approximations for 2e in a 2D quantum
strip, C.A. Ullrich, JCP 125, 234108, (2006).

- Demonstrating memory-dependence using an orbital-dependent functional

— exact-exchange via TDOEP in quantum wells, H. Wijewardane & C.A. Ullrich,
PRL 100, 056404 (2008)

 Strong-field double-ionization of atoms, at intensities/frequencies usually

used, memory effects are minimal, M. Thiele, E.K.U. Gross, S. Kiimmel, Phys.
Rev. Lett. 100, 153004 (2008).

 Analytical demonstration that ATDDFT exact for atoms in infinitely-slowly

ramped up high-frequency, intense fields, R. Baer, J. Mol. Structure: THEOCHEM
914, 19 (2009).

« Rabi oscillations get dynamically detuned in ATDDFT, J. I Fuks, N. Helbig, I.
Tokatly, A. Rubio, Phys. Rev. B. 84, 075107 (2011)



Development of Memory-Dependent Functionals...

» Gross-Kohn (1985 G om . . .
Phys. Rev. Lett 5(5, 2650 (1985) VXC.1 T-1) = f fxEL(no(e).t = )i (et dr’
Spatially local but time-non-local from t-dep linear-response of the

_ _ _ homogeneous electron gas
Violates zero-force, harmonic potential theorems

In fact, Dobson (PRL 73, 2244, 1994) showed that time-non-locality = spatial non-
local n- dependence (...more in Carsten’s lectures)

» Dobson-Bunner-Gross (1997)
Phys. Rev. Lett. 79, 1905 (1997)

Apply Gross-Kohn in frame that moves along with local velocity of electron fluid.

Spatially-local relative to where a fluid element at (r,t) was at earlier times t', R'(t'|r,t)

» Vignale-Kohn (VK) (1996) — TD-current-density-FT
Phys. Rev. Lett. 77, 2037 (1996)

—>Carsten’s lectures!

Spatially local in current j = spatially ultra-nonlocal in density n



... Development of Memory-Dependent Functionals

» Vignale-Ullrich-Conti (1997) — extend VK to non-linear regime.
G. Vignale, C.A. Ullrich, and S. Conti, PRL 79, 4878 (1997)

» Kurzwelil & Baer (2004, 2005, 2006) — Galilean- invariant “memory action
functional”, J. Chem. Phys. 121, 8731 (2004).

» Tokatly (2005, 2007) —TD-deformation-FT
Ch. 25 in “Fundamentals of TDDFT” book, 1.V. Tokatly, PRB 71, 165104 and
165105 (2005); PRB 75, 125105 (2007)

Formulate density & current dynamics in a Lagrangian frame. Since going with
the flow, spatially local xc is sensible & all complications including memory are

contained in Green’s deformation tensor g;;

» Orbital functionals

— as orbitals incorporate “infinite KS memory”, so may be most promising approach in
many situations

» Development of true ISD-Functionals? none yet!

Nevertheless, ISD and history-dependence are intimately entangled....next slide..



Evolve initial states backward in time, in some potential, to a ground-state - no ISD

Trading ISD for more history

due to Hohenberg-Kohn DFT - instead, must tack on extra piece of “pseudo pre-

history”

“memory
condition”

Starts at t=0 in initial true state W,
and KS evolves from initial state @,

4

ch[ﬂ;‘PO’(I)O](r t) = ch[ﬁ](r t)

4

n

rt

a

t

»
>

Starts at some time —T from

some ground state:

t

A n(r t)
pseudoprehistory /\/
) I.I.‘\
-T"  -T  <nitial” ground-state (any)

- The pseudoprehistory is not unique — may find many ground-states that
evolve to the same state at t=0, in different amounts of time, in different v’s.

» Eqgn applies to all — and gives a strict exact test for approximate history-
dependent functionals.

»
>



A couple of small exercises!

a) Does ALDA satisfy the “memory condition™?

b) Will a functional with history-dependence but no initial-state
dependence (such as Vignale-Kohn, or VUC — see Carsten’s
lectures), satisfy the “memory condition™?



Memory in Electronic Quantum Control

Interacting (true) system: state-to-state control {W\ﬂ

Density of desired

; target state — mth Achieve this by turning on
' excited state some laser field for some
p time until mth state

4 ‘\Density of reached, at time t*, say,

} initial ground l.e. evolve in a given

: state Veui(t), S.t.

Vext (t*) = Vext (O)

Kohn-Sham description of dynamics:

? Does the exact v, also return to its initial value ?

? Is an adiabatic approx adequate ?
Maitra, Burke, & Woodward PRL, 89, 023002 (2002); Ch. 8 in “Fundamentals of TDDFT” book



“Gedanken” Calculation of Quantum Control...

? Does the exact v, also return to its initial value ?

No, it cannot!

First note that the KS density n(t >t*) =n,,

IF v (t> t*) = v4(0), then n,, would have to be an excited-state density of
v¢(0).

But v(0) is the KS potential whose ground-state has the same density
as interacting ground-state of v_(0).

Excited KS states do nof have the same density as the excited states of
the corresponding v

ext

K VS(O)L vs(t)



? Is an adiabatic approx adequate ?
No!
2 possibilities:

(i) exact KS potential becomes static, with ®(t>t*) = ®_, -- an excited state
of v(t*). But ATDDFT instead finds KS potential which has n,, as
ground-state density.

The excited state info is encoded in the memory-dependence of the
exact KS potential, lacking in ATDDFT.

(i) exact KS (and xc potential) continue to change in time after t*, with
densities of KS orbitals evolving such that their sum remains static,
and equal to n,,. ATDDFT clearly fails, as static n > ATDDFT v, static
too.



How important is this problem in practise?

Should we give up on doing electronic control until we have good non-adiabatic

functionals?
No!

» Choose a target functional other than the true excited-state density: e.g.
optimize instead the corresponding KS excited state density, or an overlap with
it. The optimal field found for the KS system may also achieve a good outcome

for the true system

» State-control is perhaps the hardest: control of other observables, directly
related to the density, is less problematic and also interesting

e.g. transfer of density between quantum wells, bond-cleavage...
Ch. 13 in “Fundamentals of TDDFT” book;

A. Castro, J. Werschnik, E.K.U. Gross arXiv:1009.2241v1; K. Krieger, A. Castro,
E. K. U. Gross, Chem. Phys. 391, 50 (2011)



A particularly challenging problem for exact TDDFT:

Consider pumping He from ground (1s2) to first accessible excited state (1s2p).

Problem!! The KS state remains doubly-occupied throughout — cannot evolve into a
singly-excited KS state.

Simple model: evolve two electrons in a harmonic potential from ground-state
(KS doubly-occupied ¢,) to the first excited state (¢g,94) :

1 T T T 1 | T T
Target density of ) Same density as that
. iy n(x
singlet excited . (X of target state
state 0

~

Two orbifut%
of singly

1

V(X .
‘ ‘!,/Doubly—occupled

........ ™ KS orbital reached by 1
| , . TDKS

excited state
of KS potenti@]

-- KS achieves target excited density, but with a doubly-occupied ground-state orbital !

-- Yet this is how exact TDDFT describes the dynamics — the exact v, is unnatural and
difficult to approximate, as are observable-functionals of the final state...



... Quantum Control Difficulty ...

Different control targets? Instead of targeting the density, what about trying to
optimize <®d(T) [1s2p>?
- max would be 72
(c.f. close to 100% in the interacting He problem — Werschnik &

Gross (2005))
l.e. the interacting system is controllable in this sense, but the non-

interacting is not

-- But again, the optimist speaks! A clever choice of target functional may yet
be found, for which the optimal field found from KS evolution yields a large
overlap with the target in the interacting system.

Another Exercise!

Consider exciting a two electron non-interacting ground-state into its first excited
state. Pretend that you have found a laser field that gets the target density
exactly. Find an expression for the overlap of the state that is reached and the
desired state. Evaluate this for a simple potential (eg. Harmonic oscillator, or
hydrogen atom).



Summary

« Exact xc functionals in TDDFT are generally memory-dependent —
but adiabatic approximations are not.

» Functionals for more than one electron depend on the initial-state.

» Several recent attempts to develop history-dependent functionals,
none commonly used.

 History-dependence and initial-state dependence are entangled
with each other.

* Memory appears to be an important feature to capture in many
applications, like electronic qguantum control processes — orbital
functionals may be a good approach — but more study needed.

« Next time. memory in linear response — frequency-dependent
kernels in double-excitations.




To illustrate how the adiabatic approx can go wrong, can even
just consider a stationary excited state:

A Final Exercise!

For a one-electron ground-state, the KS potential-functional, determined
by inversion of the TDKS eqn, defines an exact adiabatic KS
potential, which could be written as:

- d 2 n(x)/dx?
U 5‘(1‘ ) = —— + €
2\n(x)
Now consider beginning an adiabatic calculation in the first excited state
of the 1-d harmonic oscillator. What would the initial exact adiabatic KS

potential be at this time be?

(Hint: Inserting its density into the eqn above, you should find a singularity in

the adiabatic potential at the origin of the form O(x)/|x| -- unphysical and not
allowed! )

(Note that we wouldn’t usually use a density-fnal for v, — we only use a fnal for v, ., as v, is
given by problem at hand. But for the purposes of this exercise, treat v, as a density fnal as
above)



Runge-Gross Theorem

Lines from same outer ellipse must
point to different points in inner ellipse
Lines from different ellipses may
point to same or different points

-- if from identical symbols,
must point to different points
*Non-v-representable densities are
open symbols — no lines emanate



