Time-dependent density functional theory

M. A. L. Marques and E. K. U. Gross
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

Time-dependent density functional theory (TDDFT) can be viewed as an exact reformulation of time-dependent quantum mechanics, where the fundamental variable is no longer the many-body wave-function but the density. This time-dependent density is determined by solving an auxiliary set of non-interacting Schrödinger equations, the Kohn-Sham equations. The non-trivial part of the many-body interaction is contained in the so-called exchange-correlation potential, for which reasonably good approximations exist. Within TDDFT two regimes can be distinguished: i) If the external time-dependent potential is “small” the complete numerical solution of the time-dependent Kohn-Sham equations can be avoided by the use of linear response theory. This is the case, e.g., for the calculation of photo-absorption spectra. ii) For a “strong” external potential, a full solution of the time-dependent Kohn-Sham equations is in order. This situation is encountered, for instance, when matter interacts with intense laser fields. In this review we will give an overview of TDDFT from its theoretical foundations to several applications both in the linear and in the non-linear regime.

INTRODUCTION

It was in 1964 that Hohenberg and Kohn discovered that to fully describe a stationary electronic system it is sufficient to know its ground-state density[1]. From this quantity all observables (and even the many-body wave-function) can, in principle, be obtained. The density is a very convenient variable: it is a physical observable, it has an intuitive interpretation, and it only depends on three spatial coordinates, in contrast to the many-body wave-function, which is a complex function of 3N spatial coordinates. Hohenberg and Kohn also established a variational principle in terms of the density by showing that the total energy can be written as a density functional whose minimum, the exact ground-state energy of the system, is attained at the exact density. In this way, they put on a sound mathematical basis earlier work by Thomas[2], Fermi[3, 4], and others, who had tried to write the total energy of an interacting electron system as an explicit functional of the density.

Another breakthrough occurred when Kohn and Sham proposed the use of an auxiliary non-interacting system, the Kohn-Sham system, to evaluate the density of the interacting system[5]. Within the Kohn-Sham system, the electrons obey a simple, one-particle, Schrödinger equation with an effective external potential, v_{KS}. As v_{KS} is a functional of the electronic density, the solution of this equation has to be performed self-consistently. The effective potential, v_{KS}, is usually decomposed in the form

$$v_{KS}(r) = v_{ext}(r) + v_{Hartree}(r) + v_{xc}(r).$$

The first term is the external potential (normally the Coulomb interaction between the electrons and the nuclei), while the second includes the classical (Hartree) part of the electron-electron interaction. All the complex many-body effects are contained in the (unknown) exchange-correlation (xc) potential v_{xc}. Kohn and Sham also proposed a simple approximation to v_{xc}, the local density approximation (LDA)[5]. This functional, that uses the knowledge of the xc energy of the homogeneous electron gas[6], turned out to be quite accurate for a number of applications, and is still widely used, especially in solid-state physics.

The use of the density as the fundamental variable, and the construction of the Kohn-Sham system form the basis of what became known as density functional theory (DFT)[7–9]. The original formulation assumed an electronic system at zero temperature with a non-degenerate ground-state, but has been extended over the years to encompass systems at finite temperature[10], superconductors[11, 12], relativity[13, 14], etc. An extension of somewhat different nature is time-dependent DFT (TDDFT)[15–20]. The foundation of modern TDDFT was laid in 1984 by Runge and Gross, who derived a Hohenberg-Kohn like theorem for the time-dependent Schrödinger equation[21]. The scope of this generalization of DFT included the calculation of photo-absorption spectra or, more generally, the interaction of electromagnetic fields with matter, as well as the time-dependent description of scattering experiments (which was actually the original motivation of Runge and Gross). Again, the rigorous theorems of Runge and Gross put on a firm basis previous work by Ando[22] and by Zangwill and Soven[23] who had performed the first time-dependent Kohn-Sham calculations.

It is the development of TDDFT in these past 20 years that we will review in this article.
THEORY

Preliminaries

In this review we will be concerned with systems described by the (non-relativistic) many-body Schrödinger equation

\[
i \frac{\partial}{\partial t} \Psi(t) = \hat{H}(t) \Psi(t),
\]

where \(\hat{H} \) is the Hamilton operator of the system and \(\{r\} = \{r_1, \cdots, r_N\} \) are the spatial coordinates of the \(N \) electrons. This equation describes an *initial value* problem, i.e., if we know the state of the system at an initial time \(t_0 \), equation (2) allows us to calculate \(\Psi \) at any other time \(t \). This is quite different from the solution of the time-independent Schrödinger equation, where our aim is to find the eigenstates of the Hamiltonian subject to some appropriate boundary conditions.

The Hamiltonian is naturally decomposed into three parts, \(\hat{H}(\{r\}, t) = \hat{T}(\{r\}) + \hat{W}(\{r\}) + \hat{V}_{\text{ext}}(\{r\}, t) \). The first two are the kinetic energy and the electron-electron interaction,

\[
\hat{T}(\{r\}) = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2, \quad \hat{W}(\{r\}) = \frac{1}{2} \sum_{i,j=1}^{N} \frac{1}{|r_i - r_j|}.
\]

The third term can be written as a sum of one-body potentials,

\[
\hat{V}_{\text{ext}}(\{r\}, t) = \sum_{i=1}^{N} v_{\text{ext}}(r_i, t),
\]

and can be used, for example, to describe the Coulomb interaction of the electrons with a set of nuclei,

\[
v_{\text{ext}}(r, t) = -\sum_{v=1}^{N_v} \frac{Z_v}{|r - R_v(t)|},
\]

where \(Z_v \) and \(R_v \) denote the charge and position of the nucleus \(v \), and \(N_n \) stands for the total number of nuclei in the system. Note that by allowing the \(R_v \) to depend on time we can treat situations where the nuclei move along a classical path. This may be useful to study, e.g., scattering experiments, chemical reactions, etc. Another very interesting class of problems is the interaction of electrons with external time-dependent fields. For example, for a system illuminated by a laser beam we can write, in the dipole approximation,

\[
v_{\text{ext}}(r, t) = E f(t) \sin(\omega t) r \cdot \alpha,
\]

where \(\alpha, \omega \) and \(E \) are the polarization, the frequency and the amplitude of the laser, respectively. The function \(f(t) \) is an envelope that describes the temporal shape of the laser pulse.

The absolute square of the wave-function \(\Psi(\{r\}, t) \) is interpreted as the probability of finding at time \(t \) one electron at \(r_1 \), another at \(r_2 \), etc. It then follows that

\[
n(r, t) = N \int d^3 r_2 \cdots d^3 r_N |\Psi(r, r_2 \cdots r_N, t)|^2
\]

with \(N \) the total number of electrons, \(N \). This quantity, the electronic density \(n(r, t) \), is the basic variable in terms of which TDDFT is formulated.

Basic Theorems

The central theorem of TDDFT (now called the Runge-Gross theorem) proves that there is a one-to-one correspondence between the external (time-dependent) potential, \(v_{\text{ext}}(r, t) \), and the electronic density, \(n(r, t) \), for many-body systems evolving from a fixed initial state[21]. This is a non-trivial statement with profound consequences. It implies that, if the only information we have about the system is its density, we can obtain the external potential that produced this density. With the external potential the time-dependent Schrödinger equation can be solved, and all properties of the system obtained. From this we conclude that
the electronic density determines all other properties of the quantum system. Note that this statement is true for a fixed initial state, i.e., besides the knowledge of \(n(r,t) \) we also need to know the initial many-body state. The situation is somewhat different if the system departs from its ground-state: By virtue of the ordinary Hohenberg-Kohn theorem, the many-body ground state is uniquely determined by the initial density, \(n(r,t = t_0) \). If, on the other hand, the system at \(t = t_0 \) is in an arbitrary state, the knowledge of the initial state is essential\[24, 25\].

The proof of the Runge-Gross theorem is considerably more involved than the proof of the ordinary Hohenberg-Kohn theorem. The statement actually proved is that no two potentials, \(v(r,t) \) and \(v'(r,t) \), differing by more than a purely time-dependent function \(c(t)\)\[120\], can produce the same time-dependent spin-density, \(n_\sigma(r,t) \). The demonstration is divided into parts: first one proves, using the equation of motion for the current density, that if \(v \neq v' + c(t) \) then the current densities, \(j \) and \(j' \), generated by \(v \) and \(v' \), are also different. In a second step, it is demonstrated that if two systems have different current densities, then they must also possess different time-dependent densities, i.e., \(j \neq j' \Rightarrow n \neq n' \). This proof is accomplished with the help of the continuity equation. The original proof requires that the external potential can be expanded for \(t > t_0 \) in a Taylor series around the initial time \(t_0 \). This is a fairly mild requirement (certainly fulfilled by all physical potentials). It excludes, however, the mathematically important case of adiabatically switched-on potentials. Further (mild) conditions on the allowable \(r \) dependence were discussed in detail by Gross and Kohn\[15\].

In possession of the Runge-Gross theorem, it is fairly straightforward to construct a time-dependent Kohn-Sham scheme. We introduce an auxiliary system of non-interacting electrons subject to an external local potential \(v_{KS} \). This potential is unique, by virtue of the Runge-Gross theorem applied to the non-interacting system, and is chosen such that the density of the Kohn-Sham electrons is the same as the density of the original interacting system. These Kohn-Sham electrons obey the time-dependent Schrödinger equation

\[
i \frac{\partial}{\partial t} \psi_i(r,t) = \hat{H}_{KS}(r,t) \psi_i(r,t), \quad (8)
\]

where the Kohn-Sham Hamiltonian is defined as

\[
\hat{H}_{KS}(r,t) = -\frac{\nabla^2}{2} + v_{KS}[n](r,t).
\]

(9)

By construction, the density of the interacting system can then be calculated from the Kohn-Sham orbitals

\[
n(r,t) = \sum_i |\psi_i(r,t)|^2. \quad (10)
\]

As in the Kohn-Sham scheme for the ground-state, the time-dependent Kohn-Sham potential is normally written as the sum of three terms

\[
v_{KS}[n](r,t) = v_{ext}(r,t) + v_{Hartree}[n](r,t) + v_{xc}[n](r,t). \quad (11)
\]

The first term is the external potential, while the second accounts for the classical electrostatic interaction between the electrons

\[
v_{Hartree}(r,t) = \int d^3r' \frac{n(r,t)}{|r-r'|}. \quad (12)
\]

The third term, the xc potential, includes all non-trivial many-body effects, and has an extremely complex (and essentially unknown) functional dependence on the density. This dependence is clearly non-local, both in space and in time, i.e., the potential at time \(t \) and position \(r \) can depend on the density at all other positions and all previous times (due to causality). Note that the way of writing (11) is largely a matter of convention. We separate out of \(v_{KS} \) two large terms that are well known, the external and Hartree potentials, and write the rest as the “mysterious” xc term that we expect to approximate using clever physical and mathematical arguments. The quality of the results will obviously depend on the quality of the approximation to the xc potential used. It is important to stress that, like in ground-state density functional theory, this is the only fundamental approximation in TDDFT.

Formally, \(v_{xc} \) is a functional not only of the density, but it also depends on the initial Kohn-Sham determinant and on the initial many-body wave-function. For practical reasons the latter dependence is always neglected, so that explicit density functionals, like the adiabatic LDA, only retain the density dependence. Orbital functionals, on the other hand, are functionals of both the time-dependent density and of the initial Kohn-Sham determinant.

At the heart of the Kohn-Sham construction lies the assumption that there exists a non-interacting system that possesses the same density as the interacting system that we are interested in. If this is the case, the interacting density is said to be
non-interacting v-representable. For ground-state DFT it is well known that there are some smooth densities that are not non-interacting v-representable by a single determinant (the known examples are densities built from degenerate ensembles[26, 27]). Curiously, the situation is much more satisfactory in TDDFT: it was shown that, under very mild assumptions, a time-dependent one-body potential $v_{KS}(r,t)$ exists that reproduces a given smooth density $n(r,t)$ at all times[28]. Of course, we still need to assume that the initial state is non-interacting v-representable.

Causality and the Quantum-Mechanical Action

In quantum mechanics, the ground-state of a system can be determined through the minimization of the total energy. In time-dependent systems there can be no variational principle on the basis of the total energy, simply because the total energy is not a conserved quantity. There exists, however, a quantity analogous to the energy, the quantum mechanical action

\[\mathcal{A}[\Psi] = \int_{t_0}^{t_1} dt \langle \Psi(t) | i \frac{\partial}{\partial t} - \hat{H}(t) | \Psi(t) \rangle , \]

(13)

where $\Psi(t)$ is an N-body function defined in some convenient space. It is clearly seen that $\delta \mathcal{A} / \delta \langle \Psi(t) \rangle$ yields the time-dependent Schrödinger equation. In their original paper, Runge and Gross[21] offered a derivation of the Kohn-Sham equations starting from the action (13). The xc potential is then simply the functional derivative of this quantity in terms of the density

\[v_{xc}(r,t) = \frac{\delta \mathcal{A}_{xc}}{\delta n(r,t)} , \]

(14)

where \mathcal{A}_{xc} includes all non-trivial many-body parts of the action. However, it was later discovered that this formulation encompasses two fundamental problems: i) Response functions like $f_{xc}(rt,rt') = \delta v_{xc}(r,t)/\delta n(r',t')$ must be causal, i.e., must be zero for $t < t'$, but equation (13) leads to an \mathcal{A}_{xc} which is a symmetric function of its time (and space) arguments, and therefore not causal[16, 29]. ii) To derive the time-dependent Schrödinger equation from (13) we must impose two boundary conditions on the variation, $\delta \Psi(t_0) = \delta \Psi(t_1) = 0$. However, these two variations are not independent within TDDFT, as the value of $\delta \Psi(t_1)$ is fully determined by $\delta \Psi(t_0) = 0[17, 30]$. These two problems were solved by van Leeuwen[30] in 1998. The causality problem is circumvented by the use of the Keldysh formalism[31], while the second problem is resolved by introducing a new action functional that does not explicitly contain $\partial / \partial t$:

\[A[n] = -i \ln \langle \Psi(t_0) | \hat{U}(\tau_f, \tau_i) | \Psi(t_0) \rangle + \int_{t_0}^{t_1} dt \tau' \int d^3r n(r, \tau) v_{ext}(r, \tau) , \]

(15)

where τ stands for the Keldysh pseudo-time, $\tau' = t'$ is a shorthand for $dt / d\tau$, and U is the evolution operator of the system

\[\hat{U}(\tau_f, \tau_i) = \hat{T}_C \exp \left[-i \int_{t_0}^{t_1} d\tau' (\tau) \hat{H}(\tau) \right] . \]

(16)

In the last expression, T_C denotes ordering in τ. Using the action functional (15) it is possible to construct a system of non-interacting (Kohn-Sham) electrons that yields the same time-dependent density as the interacting system. The action of the Kohn-Sham system, A_{KS} is defined similarly as in (15) but with \hat{H} replaced by \hat{H}_{KS}. The xc part of the action functional can then defined through the relation

\[A[n] = A_{KS}[n] - A_{xc}[n] = \frac{1}{2} \int_{t_0}^{t_1} d\tau' (\tau) \int d^3r \int d^3r' \frac{n(r, \tau)n(r', \tau)}{|r-r'|} . \]

(17)

The xc potential is given by the functional derivative [note the difference to (14)]

\[v_{xc}(r,t) = \left. \frac{\delta A_{xc}[n]}{\delta n(r,\tau)} \right|_{n=n(r,t)} . \]

(18)

We can now see how the causality problem is resolved: Response functions will be symmetric in the Keldysh pseudo-time, τ, but properly causal when converted to real time.
Exchange-correlation potentials

In this section we review the approximate xc functionals available in TDDFT. To this end we switch to the spin-dependent version of TDDFT, which was derived by Liu and Vosko[32] in 1989. In this generalization, the xc potentials, \(v_{xc}[n_{\uparrow},n_{\downarrow}](r,t) \), for spin up (\(\sigma = \uparrow \)) and spin down (\(\sigma = \downarrow \)) electrons depend on the time-dependent spin densities \(n_{\uparrow}(r,t) \) and \(n_{\downarrow}(r,t) \).

The history of xc functionals in ground-state DFT starts with the local (spin) density approximation (LDA)[5]. In the LDA the exchange-correlation energy density at each point, \(r \), in space is approximated by the xc energy density of a homogeneous electron gas[6] with spin densities \(n_{\sigma}(r) \).

\[
E_{xc}^{LDA}[n_{\uparrow},n_{\downarrow}] = \int d^3r n(r)E_{xc}^{HEG}(n_{\uparrow},n_{\downarrow}). \tag{19}
\]

The LDA potential is local, i.e., the value of the potential at position \(r \) depends solely on the value of the spin densities at the very same point. This simple approximation has turned out to be quite reliable. In the next generation of functionals, the generalized gradient approximations (GGA)[33], the xc energy density is written as a function of the density and of its gradient, \(\nabla n_{\sigma} \)

\[
E_{xc}^{GGA}[n_{\uparrow},n_{\downarrow}] = \int d^3r n(r)E_{xc}^{GGA}(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow}). \tag{20}
\]

The GGAs are nowadays the functionals of choice in quantum chemistry, but the LDA is still more widely used in solid-state physics. Recently a more general class of functionals was proposed – the meta-GGAs[34]

\[
E_{xc}^{MGGA}[n_{\uparrow},n_{\downarrow}] = \int d^3r n(r)E_{xc}^{MGGA}(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow},\nabla^2 n_{\uparrow},\nabla^2 n_{\downarrow},\tau_{\uparrow},\tau_{\downarrow}), \tag{21}
\]

where \(\tau_{\sigma}(r) = \sum \| \nabla \phi_{\sigma}(r) \|^2 \) denotes the kinetic energy density. The added ingredients had been previously recognized by Becke as natural quantities from several points of view[35–37]. Due to the explicit dependence on \(\tau_{\sigma} \), the meta-GGAs are orbital functionals, i.e., they have an explicit dependence on the Kohn-Sham orbitals. Of course, we should not forget that the Kohn-Sham orbitals are themselves functionals of the density (by virtue of the Hohenberg-Kohn theorem), so the meta-GGAs are still implicit density functionals. Other orbital functionals exist on the market, like the exact exchange (EXX)[38, 39], the self-interaction corrected LDA (SIC-LDA)[40], or the interaction strength interpolation (ISI)[41].

This plethora of functionals is the result of more than 35 years of active research. Unfortunately, and in contrast to stationary-state DFT, approximations to the time-dependent xc potential are still in their infancy. The simplest approximation is the so-called adiabatic approximation

\[
v_{xc}^{adiabatic}[n_{\uparrow},n_{\downarrow}](r,t) = v_{xc}[n_{\uparrow},n_{\downarrow}](r)|_{n_{\sigma}(r) = n_{\sigma}(r,t)} \tag{22},
\]

where \(v_{xc}[n] \) is some given ground-state xc functional. This adiabatic functional is clearly local in time. As \(v_{xc}[n] \) is a ground-state property, we expect that the adiabatic approximation will work best for time-dependent systems that only slightly deviate from their ground-state. By inserting the LDA potential in (22) we obtain the adiabatic local density approximation (ALDA), which is perhaps the most widely used functional in TDDFT. Naturally, the ALDA retains all the problems already present in the LDA. One of those problems, particularly important in time-dependent systems where the electrons are pushed to regions far away from the nuclei, is the incorrect asymptotic behavior of the LDA potential. For neutral finite systems, the exact xc potential decays as \(-1/r\) while the LDA potential goes to zero exponentially. Unfortunately, this problem is not corrected by most of the GGAs [an exception is the van Leeuwen and Baerends functional (LB94)[42]], nor by the more modern meta-GGAs.

A functional that does exhibit the correct asymptotic behavior is the EXX. The EXX action is obtained by expanding \(A_{xc} \) to first order in \(e^2 \) (where \(e \) denotes the electron charge). It is given by the Fock integral[30, 43]

\[
A_{xc}^{EXX} = -\frac{1}{2} \sum_{j,k} \int_{t_0}^{t_1} \int_{t_0}^{t_1} \int d^3r' d^3r \int d^3r'' \int d^3r''' \Phi_{j\sigma}(r',\tau)\Phi_{k\sigma}(r',\tau)\Phi_{j\sigma}(r,\tau)\Phi_{k\sigma}(r,\tau) \frac{\Phi_{j\sigma}(r,\tau)}{|r-r'|}. \tag{23}
\]

As this action is not an explicit density functional, one has to go through a series of chain rules in order to obtain \(v_{xc}^{EXX} \). The procedure is known, for historical reasons, as the optimized effective potential (OEP) or the optimized potential method (OPM)[38, 39]. This method was generalized to the time-dependent case by Ullrich et al.[43] The EXX potential is then determined by solving the integral equation

\[
\int \int d^3r' d^3r'' \left[v_{xc}^{EXX}(r',t') - u_{\sigma j\sigma}(r',t') \right] \Phi_{\sigma j\sigma}(r',t')\Phi_{\sigma k\sigma}(r',t')G_{\sigma \sigma}(r,t,r,t') + c.c. = 0. \tag{24}
\]
where we have defined the retarded Green’s function by

\[i G_R(\sigma, \theta; t, t') = \theta(t-t') \sum_{k=1}^{\infty} \Phi_{\sigma k}(r, t) \Phi_{\sigma k}(r', t') \].

(25)

The function \(u_{x, j0} \) is essentially the functional derivative of the action functional in terms of the Kohn-Sham orbital \(j \)

\[u_{x, j0}(r, t) = \frac{1}{\Phi_{j0}^*(r, t)} \frac{\delta A_{\text{EXX}}[\Phi, \sigma]}{\delta \Phi_{j0}(r, \tau)} \bigg|_{\Phi=\Phi_{j0}(r, t)} \].

(26)

Note that the xc potential is still a local potential, even though it is obtained through the solution of an extremely non-local and non-linear integral equation. It is possible to obtain a semi-analytic solution of (24) by generalizing an approximation first proposed by Krieger, Lee and Iafrate (KLI)[44] to the time-dependent case[43]. The KLI potential retains the correct asymptotic behavior of \(v_{\text{xc}} \), but its dependence on the Kohn-Sham orbitals becomes local in the time coordinate.

There have been few attempts to derive a functional which is non-local in time, i.e., that includes the “memory” of previous times. In 1997 Dobson et al. constructed one such functional, by borrowing a concept from hydrodynamics[45]. They assumed that in the electron liquid memory resides not with each fixed point \(r \), but rather within each separate “fluid element”. Thus the element which arrives at location \(r \) at time \(t \) “remembers” what happened to it at earlier times when it was at locations different from its present location \(r \). Using this concept, Dobson et al. proposed a functional that satisfies Galilean invariance and Ehrenfest’s theorem. Unfortunately, no applications of this functional exist to date.

LINEAR RESPONSE THEORY

Generalities

One of the corollaries of the Hohenberg-Kohn theorem for the ground-state is that all observables are functionals of the density[1]. In fact, from the knowledge of the density it is possible to uniquely determine the external potential. With this potential we can (in principle) solve the many-body Schrödinger equation, and from the many-body energies and eigenfunctions determine all observables. Clearly, also the energies of the excited states can be viewed in this way, i.e. they are functionals of the ground-state density. Unfortunately, the Hohenberg-Kohn theorem is only an existence proof, and does not teach us how to write a functional of the ground-state density. This is also the case for the excitation energies of the system. To circumvent this problem, several approaches within the scope of DFT have been proposed over the years. Some are more or less ad hoc, others rely on a solid theoretical basis. Moreover, the degree of success varies considerably among the different techniques.

As a first approximation to the excitation energies one usually uses the differences between the ground-state Kohn-Sham eigenvalues. It is well known that the Kohn-Sham eigenvalues do not have any strict physical meaning (with the exception of the highest occupied one[46]), but, in cases where no other calculations are available, they are often used to interpret experimental observations. More elaborate approaches include: i) Restricting the variational principle to wave-functions of a specified symmetry, thereby obtaining the energy of the lowest state for every symmetry class[47]; ii) The so-called generalized adiabatic connection Kohn-Sham formalism, where each state of the many-body system is adiabatically connected to a Kohn-Sham state[48, 49]; iii) Searching for local extrema of the ground-state energy functional[50]; iv) Calculating multiplet energies by a Hartree-Fock-Slater method[51]; etc.

Another very interesting technique is ensemble DFT[52–57]. In this method we are concerned with “ensembles” of the ground-state with some excited states. In the simplest case, the ensemble is defined by the density matrix

\[\hat{D} = (1 - \omega) |\Psi_1\rangle \langle \Psi_1| + \omega |\Psi_2\rangle \langle \Psi_2| \],

(27)

where \(\Psi_1 \) is the ground state and \(\Psi_2 \) the lowest excited state, and \(\omega \) is some given weight between 0 and 1/2. Using the ensemble density it is then possible to construct a DFT, and obtain the ensemble energy \(E(\omega) \) from solving a set of Kohn-Sham-like equations. Knowing \(E(\omega) \) and the ground-state energy (which can be obtained from ordinary DFT) it is trivial to determine the energy of the first excited state. The procedure can obviously be continued to calculated all excited state energies. The culprit of ensemble DFT (as in any other DFT) is the existence of good xc functionals. An ensemble LDA was developed for the equiensemble (i.e an ensemble with \(\omega = 1/2 \)) by W. Kohn in 1986[58], but the results obtained with this functional were not very encouraging. A more promising approach, involving orbital functionals within an ensemble OEP method, has also been proposed recently[59, 60].

Alternatively, the excitation energies can be obtained by knowing how the system responds to a small time-dependent perturbation, and can therefore be readily extracted from a TDDFT calculation.
The photo-absorption spectrum

For a finite system the photo-absorption cross section is proportional to the imaginary part of the dynamic polarizability.

\[
\sigma(\omega) = \frac{4\pi\omega}{c} \frac{1}{3} \sum_{\gamma} \alpha_\gamma(\omega),
\]

where \(c\) denotes the speed of light, \(\gamma = x, y, z\), and \(\alpha_\gamma(\omega)\) is simply given by

\[
\alpha_\gamma(\omega) = -\int d^3r \int d^3r' r_\gamma \sum_\sigma \chi_{\sigma\sigma}(r, r', \omega) r'_\gamma.
\]

The function \(\chi\), the so-called linear density response function of the system, measures the change of the density, when the system is perturbed by a small (infinitesimal) change of the external potential

\[
\delta n_\sigma(r, \omega) = \sum_{\sigma'} \int d^3 r' \chi_{\sigma\sigma'}(r, r', \omega) \delta v_{\text{ext}}(r', \omega).
\]

A prescription on how to calculate the photo-absorption spectrum is as follows[61]: Let \(\{ \Phi_\sigma(r) \}\) be the ground-state Kohn-Sham wave-functions of the system. Apply a perturbation of the form \(\delta v_{\text{ext}}(r, t) = - \kappa_0 \nu \delta(t)\). The amplitude \(\kappa_0\) must be small in order to keep the response of the system linear. This perturbation will excite all frequencies of the system with equal weight. At \(t = 0^+\) the Kohn-Sham orbitals are

\[
\Phi_\sigma(r, t = 0^+) = e^{i\kappa_0 \nu t} \Phi_\sigma(r).
\]

These orbitals are then further propagated for a finite time. The dynamical polarizability can then be obtained from

\[
\alpha_\gamma(\omega) = -\frac{1}{\kappa_0} \int d^3r r_\gamma \delta n(r, \omega).
\]

In the last expression \(\delta n(r, \omega)\) stands for the time Fourier transform of \(n(r, t) - \bar{n}(r)\), where \(\bar{n}(r)\) is the ground-state density of the system. This prescription has been used with considerable success to calculate the photo-absorption spectrum of several finite systems, from small molecules (see, e.g., Refs. [62, 63]) to biological systems[64]. As it is based on the propagation of the Kohn-Sham equations, this approach can be easily extended to study non-linear response, or to treat cases where the external field is not a small perturbation. However, if our sole objective is the calculation of the linear excitation spectrum, it is possible to use linear response theory to evaluate \(\chi\) directly.

Kohn-Sham linear response theory

Equation (30) tells us how to calculate the change in density, \(\delta n\), from a change in the external potential \(\delta v_{\text{ext}}\). Clearly, we can calculate the same change in density using the Kohn-Sham system

\[
\delta n_\sigma(r, \omega) = \sum_{\sigma'} \int d^3 r' \chi_{\text{KS} \sigma \sigma'}(r, r', \omega) \delta v_{\text{KS} \sigma'}(r', \omega).
\]

The unperturbed stationary Kohn-Sham orbitals enter (33) is the density response function of the non-interacting Kohn-Sham electrons. In terms of the unperturbed stationary Kohn-Sham orbitals it reads

\[
\chi_{\text{KS} \sigma \sigma'}(r, r', \omega) = \delta_{\sigma\sigma'} \sum_{jk} \frac{(f_{k\sigma} - f_{j\sigma})}{\omega - (\varepsilon_{j\sigma} - \varepsilon_{k\sigma}) + i\eta} \frac{\Phi_{j\sigma}(r)\Phi_{j\sigma}^*(r')\Phi_{k\sigma}(r')\Phi_{k\sigma}^*(r)}{\omega - (\varepsilon_{j\sigma} - \varepsilon_{k\sigma}) + i\eta},
\]

where \(\Phi_{j\sigma}\) and \(\varepsilon_{j\sigma}\) are the ground-state Kohn-Sham orbitals and eigenvalues, \(f_j\) is the occupation number of the \(j\)th orbital, and \(\eta\) is a positive infinitesimal. Using the definition of the Kohn-Sham potential, equation (11), we can obtain the linear change of the Kohn-Sham potential

\[
\delta v_{\text{KS} \sigma}(r, \omega) = \delta v_{\text{ext} \sigma}(r, \omega) + \int d^3 r' \frac{\delta n(r', \omega)}{|r - r'|} + \sum_{\sigma'} \int d^3 r' f_{\text{sc} \sigma \sigma'}(r, r', \omega) \delta n_{\sigma'}(r', \omega),
\]
with \(\delta n = \delta n_1 + \delta n_1 \), and where we have introduced the time Fourier transform of the xc kernel

\[
F_{\text{xc}}(\sigma, \omega)[n_1, n_1](r, r', t - t') = \frac{\delta v_{\text{xc}, \sigma}[n_1, n_1](r, t) - \delta n_{\sigma}(r', t')}{\delta n_{\sigma}(r', t')}
\]

(36)

Combining the previous results we obtain

\[
\delta n_{\sigma}(r, \omega) = \sum_{\tau} \int d^3 r' \chi_{\text{KS}, \sigma, \tau}(r, r', \omega) \left(\delta v_{\text{ext}, \tau}(r', \omega) + \int d^3 x \frac{\delta n(x, \omega)}{|r' - x|} \right) + \sum_{\tau} \int d^3 x f_{\text{xc}, \tau, \tau'}(r', x, \omega) \delta n_{\tau'}(x, \omega)
\]

(37)

Inserting (30) and using the fact that \(\delta v_{\text{ext}} \) is an arbitrary function, we arrive at a Dyson-like equation for the response function

\[
\chi_{\sigma, \sigma'}(r, r', \omega) = \chi_{\text{KS}, \sigma, \sigma'}(r, r', \omega) + \sum_{\tau} \int d^3 x f_{\text{xc}, \tau, \tau'}(r', x, \omega) \left(\frac{1}{|x - x'|} + f_{\text{xc}, \tau, \tau'}(x, x', \omega) \right) \chi_{\text{KS}, \tau, \tau'}(x', r', \omega)
\]

(38)

Equation (38) gives a formally exact representation of the density response of the interacting system. In fact, if we were in possession of the exact functional \(f_{\text{xc}}[n_1, n_1] \), a self-consistent solution of (38) would yield the response function, \(\chi \), of the interacting system. We note that by putting \(f_{\text{xc}} = 0 \) one recovers the random phase approximation (RPA) to the response function.

As we have established, the key ingredient of (38) is the xc kernel, \(f_{\text{xc}} \). This is, as expected, a very complicated functional of the density that encompasses all non-trivial many-body effects of the system. The simplest approximation to \(f_{\text{xc}} \) is the ALDA kernel

\[
f_{\text{xc}}(\sigma, \omega)[n_1, n_1](r, r', t - t') = \delta(r - r') \delta(t - t') f_{\text{xc}, \sigma, \omega}(n_1, n_1)_{n_\sigma = n_\sigma(r, t)}
\]

(39)

where

\[
f_{\text{xc}}(\sigma, \omega)[n_1, n_1] = \frac{d}{dn_{\sigma}} \chi_{\text{xc}, \sigma}(n_1, n_1)
\]

(40)

is just the derivative of the xc potential of the homogeneous electron gas. This kernel is trivially derived by using the ALDA xc potential in the definition (36). Note that the ALDA kernel is local both in space and in time (and hence obviously causal).

Despite of being a very crude approximation, it is found that the ALDA yields very good results for a large variety of molecules and clusters. This apparent paradox was studied by Gross and Kohn in 1985 who compared the ALDA kernel with an approximation was built with the help of several known limits and symmetry properties of \(f_{\text{xc}} \). This approximation was built with the help of several known limits and symmetry properties of \(f_{\text{xc}} \). By construction the ALDA is a good approximation at low frequencies, but at higher frequencies it completely fails to reproduce the behavior of \(f_{\text{xc}} \) (especially at lower densities). The ALDA yields such good excitation energies, even at high frequencies, because excitations at these high frequencies are usually connected to regions of space with a large density of electrons, where the ALDA becomes again a good approximation.

Another commonly used xc kernel was derived by Petersilka et al. in 1996 starting from a simple analytical approximation to the EXX potential[66, 67]. This approximation, called the Slater approximation in the context of Hartree-Fock theory, only retains the leading term in the expression for EXX. The final form of the PGG kernel is

\[
f_{\text{xc}, \sigma, \omega}(r, r', t - t') = -\delta(t - t') \delta_{\omega, \omega'} \frac{1}{|r - r'|} \left| \sum_k f_{\text{xc}, \sigma, \omega}(r) \Psi_{\rho_k}(r') \right|^2 n_{\omega}(r)n_{\omega}(r')
\]

(41)

This kernel is again local in time, but has no local spatial dependence.

Several other xc kernels have been proposed in the last years[68–72]. The interested reader may find a list with a short description of each kernel in Ref. [18].

The poles of the response function

Unfortunately, a full solution of (38) is still quite difficult numerically. Furthermore, it requires the knowledge of the non-interacting response function (34). The evaluation of this function is normally performed through an infinite summation over
both the occupied and the unoccupied parts of the spectrum. This summation is sometimes slowly convergent and requires the inclusion of many unoccupied states. For systems with a discrete spectrum of excitation (like finite systems) it is possible to recast (38) into a form that avoids these inconveniences[66]. The starting point is the Lehmann representation of the density response function

$$\chi_{\alpha\sigma}(r, r', \omega) = \lim_{\eta \to 0} \sum_{m} \left[\frac{(0|\hat{\rho}_{\alpha}(r)|m)\langle m|\hat{\rho}_{\sigma}(r')|0\rangle}{\omega - (E_m - E_0) + i\eta} - \frac{(0|\hat{\rho}_{\sigma}(r')|m)\langle m|\hat{\rho}_{\sigma}(r)|0\rangle}{\omega + (E_m - E_0) + i\eta} \right] ,$$

(42)

where $\hat{\rho}$ is the density operator, $|m\rangle$ form a complete set of many-body states with energies E_m, and η is a positive infinitesimal. From this expression it is evident that the full density response function has poles at frequencies that correspond to the excitation energies of the interacting system

$$\Omega = E_m - E_0 .$$

(43)

In the same way it is simple to realize that the Kohn-Sham response function, χ_{KS}, has poles at the difference of Kohn-Sham eigenvalues, $\varepsilon_{\rho\sigma} - \varepsilon_{\sigma\sigma}$ [cf. eq. (34)]. With this information it is possible, starting from (38) and through a series of algebraic manipulations[73], to arrive at an eigenvalue equation that determines the excitation energies (43)

$$\sum_{j\neq\alpha'} [\delta_{jj'}\delta_{\alpha\alpha'} \omega_{\alpha\sigma} + (f_{\alpha\alpha'} - f_{j\alpha'}) K_{j\alpha\sigma, j\alpha'}(\Omega)] \beta_{j\alpha'} = \Omega \beta_{j\sigma} ,$$

(44)

where we have defined $\omega_{\alpha\sigma} = \varepsilon_{\alpha\sigma} - \varepsilon_{\alpha\sigma}$ and

$$K_{j\alpha\sigma, j\alpha'}(\omega) = \int d^3r \int d^3r' \phi^*_j(r)\phi_{\alpha\sigma}(r) \left[\frac{1}{|r - r'|} + f_{\alpha\alpha'}(r, r', \omega) \right] \phi_{j\alpha'}(r')\phi^*_{\alpha\sigma}(r') .$$

(45)

Note that (44) gives the exact position of the poles of the density response function, i.e., the excitation energies of the system, and does not involve any further approximation. If the excitation is well described by one single-particle transition between an occupied and a virtual state, we can neglect the off-diagonal terms of $K_{j\alpha\sigma, j\alpha'}$ to obtain the single-pole approximation (SPA) to the excitation energies[66]. For a spin-unpolarized system it reads

$$\Omega = \omega_1 + \Re \left[K_{121,12} \pm K_{121,12} \right] .$$

(46)

Two details should be noticed in the previous formula: i) The Coulomb and f_{sc} contributions to the excitation energy appear as an additive \textit{correction} to the Kohn-Sham eigenvalue differences; ii) Equation (46) describes properly the spin-multiplet structure of otherwise spin-unpolarized ground states through the spin-dependence of f_{sc}. To make this fact more evident, we can perform the transformation $f_{sc}^{(1)} = (f_{sc11} + f_{sc12})/2$ and $f_{sc}^{(2)} = (f_{sc12} - f_{sc11})/2$, from which we can derive the singlet and the triplet excitation energies

$$\omega_{\text{singlet}} = \omega_1 + 2\Re \int d^3r \int d^3r' \phi_1^*(r)\phi_2(r) \left[\frac{1}{|r - r'|} + f_{sc}^{(1)}(r, r', \omega) \right] \phi_1(r')\phi_2^*(r') ,$$

$$\omega_{\text{triplet}} = \omega_1 + 2\Re \int d^3r \int d^3r' \phi_1^*(r)\phi_2(r) f_{sc}^{(2)}(r, r', \omega) \phi_1(r')\phi_2^*(r') .$$

(47)

Several calculations for the lowest excitation energies of atoms and molecules have been performed with these formulas with very promising results[66, 74, 75]. Further results on the SPA, including a discussion on why, and under which circumstances, the SPA is a good approximation can be found in Refs. [76, 77]

It is also possible to derive an operator whose eigenvalues are the \textit{square} of the true excitation energies, thereby reducing the dimension of the matrix equation (44)[78, 79]. The starting point is the decomposition of the linear change of the density

$$\delta n_{\sigma}(r, \omega) = \sum_{ia} [\xi_{i\sigma\sigma}(\omega)\phi_i^*(r)\phi_{\sigma\sigma}(r) + \xi_{i\sigma\sigma}(\omega)\phi_{\sigma\sigma}(r)\phi_i^*(r)] ,$$

(48)

where i denotes an occupied and a a virtual state. By inserting this expression in (37), and after performing a series of algebraic manipulations, it is possible to prove that the poles of the response function can be determined as solutions of the non-Hermitian eigenvalue problem

$$\begin{pmatrix} \hat{L} & \hat{K} \\ \hat{K}^* & \hat{L} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \Omega \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} .$$

(49)
FIG. 1: Total photo-absorption cross-section of xenon versus photon energy in the vicinity of the 4d threshold. The solid line are the TDDFT calculations of [23] and the crosses the experimental results of [80].

where the operators are defined in the product space $S_i \times S_a$, where S_i and S_a are respectively the space of occupied and virtual states. Furthermore, \hat{L} has the definition

$$L_{\alpha\alpha',\beta \beta'} = \delta_{\alpha \beta} \delta_{\alpha' \beta'} (\varepsilon_{\alpha} - \varepsilon_{\beta}) + K_{\alpha \alpha',\beta \beta'}.$$ (50)

If the operators \hat{L} and \hat{M} are real (which is true if the Kohn-Sham orbitals and $f_{xc}(\omega)$ are real-valued), the previous equation can be cast into the pseudo-eigenvalue problem

$$\sum_{\alpha \alpha', \beta \beta'} \left[\delta_{\alpha \alpha'} \delta_{\beta \beta'} (\varepsilon_{\alpha} - \varepsilon_{\beta})^2 + 2 \sqrt{\varepsilon_{\alpha} - \varepsilon_{\beta}} K_{\alpha \alpha',\beta \beta'} (\Omega) \sqrt{\varepsilon_{\alpha'} - \varepsilon_{\beta'}} \right] \beta_{\alpha' \beta'} = \Omega^2 \beta_{\alpha \beta}.$$ (51)

The eigenvalues of this equation are the square of the excitation energies, while the eigenvectors can be used to calculate the oscillator strengths[78, 79].

Some results

Finite systems

The first calculation of excitation energies within TDDFT was performed by Ando[22] to determine intersubband transitions in semiconductor heterostructures. Following this work, Zangwill and Soven[23] performed the first calculations for finite systems. Using the ALDA approximation to the xc kernel they achieved a full self-consistent solution of (38) in order to obtain the photo-absorption cross section of several rare gas atoms for energies just above the ionization threshold. Their calculation for Xe is reproduced in Fig. 1, and illustrates the excellent agreement with experiment they obtained for the rare gases. This good agreement with experiment is not only found in transitions to the continuum. In Table I the $^1S \rightarrow ^1P$ excitation energies for several atoms are listed[66]. The notation “LDA/ALDA” has the meaning that the ground-state has been obtained with the LDA functional, while the calculation of the excitation energies was done with the ALDA. We will use this notation consistently in the following. The first, perhaps surprising, fact is that the difference of Kohn-Sham eigenvalues is already quite close to the experimental excitation energies. Adding the TDDFT correction then brings the results very close to experiment. We furthermore notice that the EXX/PGG results are clearly superior to the LDA/ALDA. Note that there are two fundamental approximations in these calculations: i) To solve the linear-response equation (38) we need the ground-state Kohn-Sham orbitals. These are normally obtained with an approximate ground-state xc potential. ii) We have furthermore to approximate f_{xc} (or the time-dependent v_{xc}). It turns out that the first approximation is much more important than the choice of f_{xc} (this statement is in fact quite general for finite systems[62, 75]). This is the reason for the superiority of the EXX/PGG results: As the EXX potential, in contrast to the LDA, exhibits the correct $1/r$ asymptotic behavior, it leads to much better unoccupied states, and consequently to better excitation energies.

TDDFT has also been applied to a variety of molecular systems, from small molecules (see e.g., Refs. [73, 82]) to fullerenes[83–85] and even protein chromophores[64]. The most commonly used approximation for f_{xc} is the ALDA, but
TABLE I: $^1S \rightarrow ^3P$ excitation energies for selected atoms. Ω_{exp} denotes the experimental results from [81]. All energies are in hartrees. Table adapted from [66].

<table>
<thead>
<tr>
<th>Atom</th>
<th>ω_{LDA}</th>
<th>$\Omega_{\text{LDA/ALDA}}$</th>
<th>ω_{EXX}</th>
<th>Ω_{EXX}</th>
<th>Ω_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be</td>
<td>0.129</td>
<td>0.200</td>
<td>0.130</td>
<td>0.196</td>
<td>0.194</td>
</tr>
<tr>
<td>Mg</td>
<td>0.125</td>
<td>0.176</td>
<td>0.117</td>
<td>0.164</td>
<td>0.160</td>
</tr>
<tr>
<td>Ca</td>
<td>0.088</td>
<td>0.132</td>
<td>0.079</td>
<td>0.117</td>
<td>0.108</td>
</tr>
<tr>
<td>Zn</td>
<td>0.176</td>
<td>0.239</td>
<td>0.157</td>
<td>0.211</td>
<td>0.213</td>
</tr>
<tr>
<td>Sr</td>
<td>0.082</td>
<td>0.121</td>
<td>0.071</td>
<td>0.105</td>
<td>0.099</td>
</tr>
<tr>
<td>Cd</td>
<td>0.152</td>
<td>0.214</td>
<td>0.135</td>
<td>0.188</td>
<td>0.199</td>
</tr>
</tbody>
</table>

FIG. 2: The computed photo-absorption cross-section[64] of the chromophore of the green fluorescent protein compared to the experimental measurements. The dashed line corresponds to the neutral chromphore, the dotted line to the anionic, whereas the crosses and solid curves are the experimental results of Ref. [86] and Ref. [87] respectively.

calculations have been reported using other functionals. The results are usually in very good agreement with experiment. In Fig. 2 we show an example of an ALDA calculation, namely the absorption spectrum of the green fluorescent protein (GFP)[64]. In nature, the chromophore of the GFP appears in two configurations, a neutral and a anionic. The experimental spectrum includes contributions from both. From the figure it is clear that the positions of the peaks are in very good agreement with the measured spectra. Furthermore, by comparing the areas of the experimental and theoretical peaks we can estimate that the two forms of the photo-receptor appear in a $\sim 4:1$ ratio, which is again in agreement with experimental findings.

Despite these unequivocal successes, there are finite systems for which the ALDA yields poorer results. For example, the ALDA sometimes underestimates the onset of absorption by 1 or 2 eV[62]. However, this problem is solved by the use of functionals with the correct asymptotic behavior, like the EXX or the adiabatic LB94[42]. A more complicated problem is posed by the stretched H$_2$ molecule, where the ALDA fails to reproduce even qualitatively the shape of the potential curves for the $^3\Sigma_u^+$ and $^1\Sigma_u^+$ states[88, 89]. A detailed analysis of the problem shows that the failure is related to the breakdown of the simple local approximation to the kernel.

Extended systems

In a solid, the neutral excitations are related to the dielectric function, that measures how the Coulomb interaction is screened by the electrons. For a spin-unpolarized system we can write the inverse dielectric function, ε^{-1}, in terms of the full density response function of the system, $\chi = \sum_{\sigma\sigma'} \chi_{\sigma\sigma'}$. It reads

$$\varepsilon^{-1}(r, r', \omega) = \delta(r - r') + \int d^3x \frac{\chi(x, r', \omega)}{|x - x'|}.$$

(52)

To calculate the photo-absorption spectrum we have to look at the long-wavelength limit of (52). The limit has, however, to be taken with care. We define the macroscopic dielectric function as

$$\varepsilon_M(\omega) = \lim_{q \to 0} \frac{1}{\varepsilon^{-1}(q, \omega)} \frac{1}{G(q, \omega' = 0)},$$

(53)
where q is a vector of the first Brillouin zone, and G and G' are reciprocal lattice vectors. The photo-absorption spectrum can then be obtained from the imaginary part of the macroscopic dielectric function, $\sigma(\omega) = \mathcal{I} \varepsilon_M(\omega)$. Furthermore, the dielectric constant, ε_0, is the value of $\varepsilon_M(\omega)$ at $\omega = 0$.

We have seen the excellent quality of the results obtained for finite systems using the ALDA. Naïvely we could perhaps expect that the same would occur for extended systems. This is unfortunately not the case.

An example where the ALDA fails is the calculation of non-linear optical properties of long conjugated polymers[90, 91]. Van Gisbergen et al. found that the ALDA (as well as the adiabatic GGAs) overestimates hyperpolarizabilities by several orders of magnitude[90]. The authors were able to trace back the problem to an incorrect electric field dependence of the xc potential: In a system with an applied electric field, the exact xc potential develops a linear part that counteracts the applied field[90, 92]. This term is completely absent in both the LDA and the GGA, but is present in more non-local functionals like the EXX.

But perhaps the most spectacular failure of the ALDA is in the calculation of the photo-absorption spectrum of non-metallic solids, especially in systems like wide band-gap semiconductors. In fact, the ALDA fails to give a significant correction to the simple RPA results. The reason is the following: For infinite systems, the Coulomb potential is (in momentum space) $4\pi q^2$. It is clear from (38) that if f_{xc} is to correct the RPA response for $q \to 0$ it will have to behave asymptotically like $1/q^2$ when $q \to 0$. This is not the case for the local or gradient-corrected approximations (they approach a finite value when $q \to 0$).

In Fig. 3 we show the experimental photo-absorption spectrum of silicon[93] compared to several theoretical results. It is clear from the figure that the ALDA curve does not deviate much from the RPA results. Both underestimate the onset for absorption by around 0.5 eV, and fail to give the proper oscillator strength to the first peak. On the other hand, the spectrum obtained from the solution of the Bethe-Saltpeter equation (a many-body perturbational approach) is indeed very close to the experimental values. Several attempts have been made to correct this problem:

i) Using insight gained from the Bethe-Saltpeter equation, Reining et al. proposed an f_{xc} of the form $-\alpha q^2$[72] (the RORO kernel). By using the empirical value of $\alpha = 0.2$ they were able to describe quite well both the real and imaginary parts of the dielectric constant (see Fig. 3). Unfortunately, the RORO kernel is semi-phenomenological.

ii) Kim and Görling calculated the photo-absorption spectrum of silicon by using the EXX approximation both in the calculation of the ground-state and for f_{xc}[94]. They found that the spectrum collapsed due to the long-range nature of the Coulomb interaction. However, by cutting off the interaction, they were able to obtain results in very good agreement to the experimental curve.

iii) In any finite system subject to an electric field, there will be accumulation of charge at the surface, which will induce a
counter-field inside the sample. In a solid, the problem is more complicated. As the solid is described by periodic boundary conditions, the density is the same in every unit cell. Clearly, it is not possible for any local (or semi-local) functional of the density to describe the counter-field produced by the macroscopic polarization of the system[95–97]. To circumvent this problem, Bertsch et al. proposed to use as an extra dynamical variable the surface charge, or equivalently the macroscopic field produced by that charge[98]. The whole scheme is especially well suited to be used in a real-space, real-time approach[61, 99]. The authors did not calculate the spectrum of silicon, but their results for the simple metal lithium and for diamond are very encouraging[98].

iv) Another way to take into account the macroscopic polarization is by using information coming from the current response of the system. Such an approach was followed by de Boeij et al., that solved the response equations within a time-dependent current-density functional formalism[100–102], using a current-response kernel proposed by Vignale and Kohn in 1996[103]. Their calculations of the dielectric function for several semiconductors are in quite good agreement with experiment.

We remark that all these methods are the result of quite recent investigations, so it is very reasonable to expect further developments in the near future.

TDDFT can also be used to calculate the electron energy loss spectrum (EELS) of a system. The EELS is obtained from

\[
\text{EELS}(q, \omega) = -\frac{3}{2} \left[\epsilon^{-1}(q, \omega)_{G=0,G'=0} \right],
\]

Calculations of the EELS for silicon[18] and diamond[104] using the ALDA are in rather good agreement with experimental spectra, especially for small \(q \). These good results may come as a surprise in view of the failure of the ALDA to describe absorption spectra. However, it happens that for the calculation of the EELS the most important ingredient is the proper inclusion of local field effects (i.e. the non-diagonal elements in \(G \) and \(G' \) of \(\epsilon \)), while the choice of \(f_{xc} \) appears to be less important[104].

\[D(t) = \int d^3 r z n(r,t). \] (55)

The absorption (or stimulated emission) spectrum is given essentially by the Fourier transform of \(D(t) \)[107]

\[
\sigma_{\text{absorption}}(\omega) \propto \left| \frac{d}{dt} e^{i\omega t} D(t) \right|^2.
\] (56)

On the other hand, the spectrum of emitted radiation is approximately (i.e. neglecting incoherent processes) given by[107, 108]

\[
\sigma_{\text{emission}}(\omega) \propto \left| \int dt e^{i\omega t} \frac{d^2}{dt^2} D(t) \right|^2.
\] (57)

The dipole acceleration, \(d^2 D(t)/dt^2 \), can be obtained either by numerical differentiation, or by using Ehrenfest’s theorem[108].

A typical high-harmonic spectrum is shown is shown in Fig. 4 for the He atom. The spectrum consists of a series of equispaced peaks at odd multiples of the external laser frequency (the even peaks are forbidden by inversion symmetry). The squares are
FIG. 4: Harmonic spectrum for He at $\lambda = 616$ nm and $I = 3.5 \times 10^{14}$ W cm$^{-2}$. The squares represent experimental data taken from[109] normalized to the value of the 33rd harmonic of the calculated spectrum. Figure reproduced from Ref. [110].

at the experimental peak positions[109], and the solid line is the EXX/EXX calculation of Ref. [110]. The agreement is quite satisfactory. Furthermore, by using TDDFT, one can study the dependence of the harmonic spectrum on the driving laser. It was found that by changing the intensity or the spectral composition of the driving laser the emission of harmonics can be enhanced sometimes by several orders of magnitude[110–112].

Ionization Yields

In experiments employing low intensity laser fields, electrons can only ionize if the frequency of the laser is larger than the ionization potential of the system. However, if the intensity of the laser is large enough, the electrons can ionize for any frequency of the applied laser through non-linear processes. The measured energy spectrum of the outgoing photo-electrons is called the above threshold ionization (ATI) spectrum[113]. An ATI spectrum typically consists of a sequence of equally spaced peaks at energies $E = (n + s)\omega - I_p$, where n is a natural integer, s is the minimum integer such that $s\omega - I_p > 0$, and I_p denotes the ionization potential of the system.

A quantity related to the ionization probability is the number of charged atoms that leave the interaction region. Fig. 5 shows the yield of singly ionized and doubly ionized helium versus laser intensity[114]. The solid curve on the right is the result of a calculation assuming a sequential mechanism for the double ionization of helium. Strikingly, this naive sequential mechanism is wrong by six orders of magnitude for some intensities. This makes helium in a strong laser field one of the most correlated systems known in physics, and therefore a very stringent test to TDDFT.

The Runge-Gross theorem tells us that the ionization yields are functionals of the time-dependent density. Unfortunately, and in contrast to the high harmonic spectrum, we do not know how to write down these functionals exactly. Is is, however, possible to construct approximations to them, by invoking a geometrical picture of ionization[115]. Let us divide the 3-dimensional space, \mathbb{R}^3, into a (large) box, A, containing the helium atom, and its complement, $B = \mathbb{R}^3 \setminus A$. Normalization of the many-body wave-function then implies

$$1 = \int_{A} d^3 r_1 d^3 r_2 |\Psi(r_1, r_2, t)|^2 + 2 \int_{A} d^3 r_1 d^3 r_2 |\Psi(r_1, r_2, t)|^2$$

where the subscript $A (B)$ means that the space integral is only over region $A (B)$. At sufficiently long time after the end of the laser pulse we expect all ionized electrons to be in region B. Then the second term of (58) can be interpreted as a single ionization probability, while the third will measure the probability of double ionization. However, these terms are written in terms of the wave-function and not of the density. To circumvent this problem we introduce the pair-correlation function

$$g[n](r_1, r_2; t) = \frac{2|\Psi(r_1, r_2, t)|^2}{n(r_1)n(r_2)} ,$$

$$1 = \int_{A} d^3 r_1 d^3 r_2 |\Psi(r_1, r_2, t)|^2 + 2 \int_{A} d^3 r_1 d^3 r_2 |\Psi(r_1, r_2, t)|^2$$

where the subscript $A (B)$ means that the space integral is only over region $A (B)$.
which can be approximated in terms of the density only. By taking the simplest approximation to the pair correlation function, i.e. $g[n] = 1/2$, Petersilka and Gross calculated the ionization yields of helium[115]. All xc functionals tested (ALDA, EXX and SIC-LDA) clearly yielded a significant improvement over the sequential mechanism. However, TDDFT results are still wrong sometimes by two orders of magnitude, and fail to reproduce the characteristic knee in the double ionization curve (see Fig. 4).

Better functionals for $g[n]$ did not significantly improve the results. This may indicate that the crucial approximation is the one for $v_{xc}[n]$. It was also found that the ALDA potential greatly overestimates the ionization yield. This is due to the incorrect asymptotic behavior of the ALDA potential: The outermost electron of helium is not sufficiently bound and ionizes too easily.

The electron localization function

A large number of chemical and physical processes involve the dynamics of excited electrons. Some examples include the photo-isomerization of retinal, the absorption and transfer of energy in chlorophyll, the interaction of molecules with a strong laser, etc. All these processes have something in common: there is a change in the bonding properties of the system. Clearly, to understand them, we would like to be able to visualize how the bonds were destroyed, created, or simply changed in character.

Unfortunately, it is very hard to visualize a chemical bond: The electronic density is usually a very smooth quantity, and does not easily reveal the subtleties of chemical bonding; On the other hand, one-electron orbitals stemming from a Hartree-Fock or a Kohn-Sham calculation extend over several atoms and do not represent a single bond. To overcome this problem Becke and Edgecombe introduced the electron localization function (ELF)[116]. By looking at this function, it is a trivial matter to distinguish between simple, double and triple bonds, to recognize lone pairs, etc.[117] The ELF can also be used to rigorously classify chemical bonds[118].

The original derivation of the ELF was restricted to systems in their ground-state, but recently Burnus et al. extended this derivation to time-dependent systems. The basic ingredient entering the ELF is a function, $D_{\sigma}(r,t)$, that measures the probability of finding an electron close, in space and time, to a reference electron of like spin. If the reference electron participates in a covalent bonding, and is therefore localized in the bonding region, this probability must be small. On the other hand, for a fully delocalized electron this probability must be large. The function $D_{\sigma}(r,t)$ is approximately given by

$$D_{\sigma}(r,t) = \tau_{\sigma}(r,t) - \frac{1}{4} \frac{\left[\nabla n_{\sigma}(r,t)\right]^2}{n_{\sigma}(r,t)} - \frac{\left[\frac{\vec{\rho}_{\sigma}(r,t)}{n_{\sigma}(r,t)}\right]^2}{n_{\sigma}(r,t)}.$$

FIG. 5: Measured He\(^+\) and He\(^{2+}\) yields as a function of the laser intensity. The solid curve on the right is the He\(^{2+}\) yield, calculated under the assumption of a sequential mechanism. Figure reproduced from[114].
where \(j \) is the absolute value of the current, and

\[
\tau_\sigma(r,t) = \sum_{j=1}^{N_\sigma} \left| \nabla \psi_\sigma(r,t) \right|^2,
\]

(61)
is the kinetic energy density. The function \(D_\sigma \) is always \(\geq 0 \) but it is not bounded from above. We therefore define

\[
\text{ELF}(r,t) = \frac{1}{1 + \left[D_\sigma(r,t)/D_0^\sigma(r,t) \right]^2},
\]

(62)

where \(D_0^\sigma \) is a local density approximation to the function \(D_\sigma \) (see [119] for details). With this definition, the ELF is dimensionless and lies between 0 and 1. Furthermore, a completely localized bond will have \(\text{ELF} \approx 1 \), while for a delocalized electron gas \(\text{ELF} \approx 1/2 \).

To illustrate the usefulness of the time-dependent ELF in visualizing and interpreting complicated processes, Burnus et al. performed TDLDA calculations of the excitation of acetylene by a moderately strong laser field, and of the scattering of a high energy (yet non-relativistic) proton by ethene[119]. In the first case, the ELF clearly shows ionization of electrons in fairly localized packets, and the transition between the bonding \(\pi \) to the anti-bonding \(\pi^* \) state. In the latter simulation, the oscillation and breaking of bonds and the creation of lone pairs was clearly visualized.

CONCLUSIONS

In this review we tried to give a fairly general overview on the work done in TDDFT since its foundations by Runge in Gross in 1984. Clearly, an enormous amount of progress has been made during the past 20 years – several fundamental problems were understood and some of them solved, a legion of new xc functionals were proposed (with varying degree of success), and the theory was applied to a vast number of problems in Physics and Chemistry. Probably, the major success of TDDFT is the calculation of linear excitation energies in finite systems: Even the simplest approximation to the xc potential, the so-called adiabatic LDA, yields remarkably good results. As a consequence, the linear-response TDDFT equations are by now implemented in every major quantum-chemistry code, and are in extensive use by the community. Extended systems, like polymers or bulk materials, pose a serious challenge. However, very recent developments in the field suggest that also these systems are well within the reach of the theory. In the non-linear regime TDDFT is by now able to describe harmonic generation and multi-photon ionization. TDDFT sometimes fails, like in the description of the knee structure in the yield of doubly ionized helium or in the calculation of the excitation spectrum of dissociating H\(_2\). These limitations require further research. Clearly the quest for new, ever better xc functionals is only beginning.

Acknowledgments

We would like to thank Nicole Helbig, Silvana Botti, and Patrick Rinke for their useful comments and suggestions during the preparation of the manuscript.

Literature Cited

If the two potentials differ solely by a time-dependent function, they will produce wave-functions which are equal up to a purely time-dependent phase. This phase will, of course, cancel when the density (or any other observable, in fact) is calculated.