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‘Memory in TDDFT|

Never forget...

Uie[n; Wo., dp](rt) depends on

A s

(i) entire history of and (ii) initial states
the density, n(r.t' < t) W, Py

Hessler, NTM, & Burke, JCP 117, 72 (2002);

NTM & Burke, PRA 63 042501 (2001); 64 039901 (E)
(2001); CPL 359, 237 (2002),

NTM, Burke, & Woodward, PRL 89, 023002 (2002).
NTM, sub. to IJQC (2004).

e Linear response: only need to worry about (i)

e Almost all calculations are "Adiabatic’ - input only the
instantaneous density into a ground-state functional:
e.g. in ALDA, v"""[n(rt)](rt)

Neglect all memory-dependence.

e Functionals that include some non-adiabaticity:
e Gross-Kohn (1990)
e Vignale-Kohn (1996)
e Dobson-Biinner-Gross (1997)
e Tokatly-Pankratov (2003)

e Kurzweil-Baer (2004)

e My talk today: focus on 3 situations where strong
memory-dependence (non-adiabaticity) is essential.




Qutline

e Memory in Quantum Control Problems
e Memory in Linear Response:
» Double excitations

+ Long Range Charge Transfer between
Open Shells
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Significance of memory in quantum-control
type problems

(from NTM, Burke, & Woodward, PRL 89, 023002 (2002))

(Interacting, true system)

Target state W,

vext (1) Where v, = Ve

LT e —

Ground state Wg

?Uc.ut.f T— 1”!!5-!"...'..'

and n(rt > t*) = np,(r)
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e How does the KS system describe this?
Consider the final KS state.

Immediate observation: Excited KS states of a fixed .
do not have the same density as the excited states of
the corresponding wvext —— v., & v,
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Scenario (i): Ground state ®g — Py,

&, is a SSD with constant density n,,(r), the msth
excited state of a different KS potential, v., &= v.,.
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v.,(r) = v.[n](r,t > t*), a functional of the entire history
of the density, necessarily including the early history < t*.

(If it didn't, ve,(r) would be e.g. the potential in which nn(r) is the
ground-state density, rather than that of the math excited state).

— e has‘infinite’memory!

Alternatively, think of vs,(r) = vs[nm,: ®m,l(rt > t*) (a special case
of the exact condition in MBWO02, with initial time t*)

What would an adiabatic approximation give?

Const n = n,, — v.. const, but it will be the potential
where the ground-state has density #n,, vi[nm], rather
than the h excited state of the corresponding vex
having density nm.

Need infinite history-dependence to get it right.
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Scenario (ii): Ground state ®g — ®(¢)

where ®(t) and v.(t) continue to evolve forever Ln time,
t > t*, but with a constant density — w. has ‘infinite

memaory n(t)
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e The Kohn-Sham state is of a fundamentally different
nature than the true state — challenging for TDDFT.
An adiabatic approx. , or anything not entirely non-local
in time, can never get this as it would be constant in
time, as the density is.

e Orbital functionals Incorporate “infinite KS memory",
so most likely the best approach for these problems.




Hunt for the elep hant .. ..
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I Linear response: Memory-dependence in |
excitation energy calculations

In(rw) = /dar’};[ng](rr’w}ﬁvext(r’u)

— [d3r'x5 [ng] (rr'w)dvs (r'w)

‘{_ Poles of ys(r,r';w) — KS single excitation energies
WD poles of x(r,r’;w) — physical excitation energies

x[nol(w) = xs[no](w) + xs[no](w) * fuxc(w) * x[nol(w)
where

Juxe [”D](ra r,w) =1/|r —r'| + fre[no](r, r', w)

f«c is the exchange-correlation kernel:

Fec[no)(r, v’ t —t') = du.(xt) /on(rt’)|n,

e We note the single-pole approximation (SPA):

W =y + 2[q| fuxe (wy)lgl,
KS transition freq, « t R

4] frxc(@)]q] = [ drdr'e; (£)éa(r) fie(r, v/, w)ei(r) i (r'),

valid when the excitation is “well-separated” from all others.

e Formally, memory shows up as frequency-dependence
iNn f.

In the ubiquitous adiabatic approximations, f« IS propor-
tional to 6(¢—t'), and its Fourier transform is frequency-
independent — has no memory.

Yet often, but not always, this yields very good approx-
imations for the interacting energies.

e When and why does the adiabatic approx work well?
Well, I don’t know exactly, but I will instead show you
two cases where it will fail - where strong w-dependence
is essential.



TDDFT? fxc for CT between open-shells.

First, consider response functions:

Fo(r)Fy(x! _
xs(r, ', w) = Z = i(ui} —{i(i[))-I- + c.e.(w — —w) with Fy = ¢i¢q,
2w’ -
= = (w*)z"'ﬁ“(r‘ ', (w))
Similarly,
2w .1 2w1-2 ;
x(r,r',w) = (w)) Aya(r, v, (w))
w? — w%—tl 2 — 'f-—-E

That the response fns vanish exponentially with separation, can
also be understood from:

¥slw) = 5“ (w) - perturbation at w* excites antibonding transition,
whose dens:ty differs only exply smally from the bonding orbital’s.

y(w) = CT transitions have very weak oscillator
strength due to the widely separated spatial -regions.
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Dressed Small Matrix Approximation

for CT transitions between open-shells:
w2 = w2 + 4wy[q| e ()]

where fl-lxc(w) = Xc_._l(“-’) - X“-l(“-")

We find,..
20 [g frc(w) ] = &P — BE— Y=ol -
P g ~
g = (do — ¢*) strong nan-adiabaticity!
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Note.
The occ.— unocc. overlap is no longer zero:
$i(r)pa(r) = go(r)e*(r) = (&3(r) — #3(r)) /2

Rather, the matrix element [g|f.xc(w)|q] diverges with interatomic
separation R, as 1/w* ~ ¢*?, inside each atomic region.

(c.f. Gritsenko & Baerends, JCP 120 8364,. 2004, Gritsenko, van
Gisbergen, Goérling, & Baerends 2000)

Maybe this divergence is not present in velocity-velocity response
functions.



Other excitations of a long-range heteroatomic
molecule?

e [he step in v. turns higher atomic excitations into KS
resonances:

Two "Eckart Atoms" in 1—d

0.5

0

= 5

What acrobatics must f.. do to turn these KS reso-
nances back into bound states of the true system?

e For every single excitation out of the HOMO bond-
ing orbital,(0 — a), there is a near degenerate double-
excitation, (0,0) — (0*,a), absent in the KS response
function, but essential for the true response — frequency-
dependence, with ubiquitous poles of f..

Consequence of static correlation for TDDFT
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Conclusions

e T he role of memory often cannot be ignored without
drastic conseqguences.

e In fully non-linear phenomena, eg. quantum control,
we encountered extreme non-locality in time, and chal-
lenges to deal with severe static correlation.

e In linear response, memory is essential for the treat-
ment of double excitations where the exact kernel is
strongly frequency-dependent. Our dressed SPA shows
promising results and improved energies.

e For charge-transfer states between open-shells at long-
range, frequency-dependence is also essential. The step
in the ground-state KS potential renders the bare KS
CT energies to be near 0. Static correlation leads to
strong frequency-dependence in the kernel.

e Very interesting consequences of the step in the KS

potential in a long-range heteroatomic molecule for TDDFT

remain to be explored.

/|



"This isn't right. This isn't even wrong."

— Wolfgang Pauli
e [ hanks to

* collaborators on some of this work: Kieron
Burke, Bob Cave, Fan Zhang.

s« and to René Gaudoin, Adam Wasserman
for useful discussions

e Thanks also to: The Petroleum Research
Fund and the Research Foundation of CUNY
for $$%





