The electronic structure of delafossite transparent conductive oxides

J. Vidal, F. Trani, L. Reining, S. Botti, M.A.L. Marques

1LPMCN, CNRS-Université Lyon 1, France
2European Theoretical Spectroscopy Facility
Outline

1. Delafossite transparent conductive oxides

2. What is the mixing of Hybrid functionals
Delafossite transparent conductive oxides

The delafossite crystal structure

Edge-sharing MO$_6$ octahedral layers \rightarrow

CuO$_2$ dumbbell layers \rightarrow

M is a group-III element (Al, Ga, In, B)
Delafossite transparent conductive oxides

Delafossite TCO properties

Cu(Al,In,Ga)O$_2$ thin-films are **transparent** and **conducting**:
- **p-type** or even **bipolar** conductivity
- combination of **n-** and **p-type** TCO materials allows
 - → stacked cells with increased efficiency
 - → functional windows
 - → transparent transistors

very similar structure of the Cu(Ga,In)(S,Se)$_2$ family of absorbers for thin-film photovoltaics.
Delafossite transparent conductive oxides

Literature - early results

1997 Kawazoe et al. [Nature 389, 939 (1997)]
P-type electrical conduction in delafossite CuAlO$_2$ thin films

2001 Yanagi et al. [Appl. Phys. Lett. 78, 1583 (2001)]
Bipolarity in electrical conduction of delafossite CuInO$_2$

2002 Yanagi et al. [Solid State Comm. 121, 15 (2002)]
All transparent oxide p-n homojunction with delafossite CuInO$_2$.

The situation coming from optical spectroscopy experiments on CuMO$_2$ thin films: low-energy indirect gap, direct gap comparable to other TCOs.

<table>
<thead>
<tr>
<th></th>
<th>Indirect</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuAlO$_2$</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>CuInO$_2$</td>
<td>1.97</td>
<td>3.6</td>
</tr>
<tr>
<td>CuGaO$_2$</td>
<td>1.44</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Simple interpretation of the “band-gap anomalies” in delafossite TCOs: the band gaps are supposed to decrease on increasing the atomic number of M
1997 Kawazoe et al. [Nature 389, 939 (1997)]
P-type electrical conduction in delafossite CuAlO$_2$ thin films

2001 Yanagi et al. [Appl. Phys. Lett. 78, 1583 (2001)]
Bipolarity in electrical conduction of delafossite CuInO$_2$

2002 Yanagi et al. [Solid State Comm. 121, 15 (2002)]
All transparent oxide p-n homojunction with delafossite CuInO$_2$.

The situation coming from optical spectroscopy experiments on CuMO$_2$ thin films: low-energy indirect gap, direct gap comparable to other TCOs.

<table>
<thead>
<tr>
<th></th>
<th>Indirect</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuAlO$_2$</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>CuInO$_2$</td>
<td>1.97</td>
<td>3.6</td>
</tr>
<tr>
<td>CuGaO$_2$</td>
<td>1.44</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Simple interpretation of the “band-gap anomalies” in delafossite TCOs: the band gaps are supposed to decrease on increasing the atomic number of M.
Literature - early results

- **1997** Kawazoe et al. [Nature **389**, 939 (1997)]
 P-type electrical conduction in delafossite CuAlO$_2$ thin films

 Bipolarity in electrical conduction of delafossite CuInO$_2$

 All transparent oxide p-n homojunction with delafossite CuInO$_2$.

 The situation coming from optical spectroscopy experiments on CuMO$_2$
 thin films: low-energy indirect gap, direct gap comparable to other TCOs.

<table>
<thead>
<tr>
<th></th>
<th>Indirect</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuAlO$_2$</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>CuInO$_2$</td>
<td>1.97</td>
<td>3.6</td>
</tr>
<tr>
<td>CuGaO$_2$</td>
<td>1.44</td>
<td>3.9</td>
</tr>
</tbody>
</table>

 Simple interpretation of the “band-gap anomalies” in delafossite TCOs:
 the band gaps are supposed to decrease on increasing the atomic
 number of M
Literature - early results

- **1997** Kawazoe et al. [Nature **389**, 939 (1997)]
 P-type electrical conduction in delafossite CuAlO$_2$ thin films

 Bipolarity in electrical conduction of delafossite CuInO$_2$

 All transparent oxide p-n homojunction with delafossite CuInO$_2$.

The situation coming from optical spectroscopy experiments on CuMO$_2$
thin films: low-energy indirect gap, direct gap comparable to other TCOs.

<table>
<thead>
<tr>
<th>Gap (eV)</th>
<th>Indirect</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuAlO$_2$</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>CuInO$_2$</td>
<td>1.97</td>
<td>3.6</td>
</tr>
<tr>
<td>CuGaO$_2$</td>
<td>1.44</td>
<td>3.9</td>
</tr>
</tbody>
</table>

 Simple interpretation of the “band-gap anomalies” in delafossite TCOs:
 the band gaps are supposed to decrease on increasing the atomic number of M.
1997 Kawazoe et al. [Nature 389, 939 (1997)]
P-type electrical conduction in delafossite CuAlO$_2$ thin films

2001 Yanagi et al. [Appl. Phys. Lett. 78, 1583 (2001)]
Bipolarity in electrical conduction of delafossite CuInO$_2$

2002 Yanagi et al. [Solid State Comm. 121, 15 (2002)]
All transparent oxide p-n homojunction with delafossite CuInO$_2$.

The situation coming from optical spectroscopy experiments on CuMO$_2$ thin films: low-energy indirect gap, direct gap comparable to other TCOs.

<table>
<thead>
<tr>
<th>Gap (eV)</th>
<th>Indirect</th>
<th>Direct</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuAlO$_2$</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>CuInO$_2$</td>
<td>1.97</td>
<td>3.6</td>
</tr>
<tr>
<td>CuGaO$_2$</td>
<td>1.44</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Simple interpretation of the “band-gap anomalies” in delafossite TCOs: the band gaps are supposed to decrease on increasing the atomic number of M
2001 Yanagi et al. [J. of Appl. Phys. 88, 4159 (2001)]
Photoemission spectra for CuAlO₂, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap

2002 Robertson et al. [Thin Solid Films 411, 96 (2002)]
B3LYP calculations — there is no trace of low-energy indirect bandgaps

2006 Pellicer-Porres et al. [Appl. Phys. Lett. 88, 181904 (2006)]
Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO₂

Large excitonic effects in CuMO₂, exciton binding energy at about 0.5 eV.

2009 Pellicer-Porres et al. [Semicond. Sci. Technol. 24, 015002 (2009)]
Large polaron constant in CuAlO₂.

First production of CuBO₂ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. 21, 4568 (2009)].
2001 Yanagi et al. [J. of Appl. Phys. 88, 4159 (2001)]
Photoemission spectra for CuAlO$_2$, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap

2002 Robertson et al. [Thin Solid Films 411, 96 (2002)]
B3LYP calculations — there is no trace of low-energy indirect bandgaps

2006 Pellicer-Porres et al. [Appl. Phys. Lett. 88, 181904 (2006)]
Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO$_2$

Large excitonic effects in CuMO$_2$, exciton binding energy at about 0.5 eV.

2009 Pellicer-Porres et al. [Semicond. Sci. Technol. 24, 015002 (2009)]
Large polaron constant in CuAlO$_2$.

First production of CuBO$_2$ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. 21, 4568 (2009)].
Literature - recent results

- **2001** Yanagi et al. [J. of Appl. Phys. 88, 4159 (2001)]
 Photoemission spectra for CuAlO$_2$, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap

- **2002** Robertson et al. [Thin Solid Films 411, 96 (2002)]
 B3LYP calculations — there is no trace of low-energy indirect bandgaps

- **2006** Pellicer-Porres et al. [Appl. Phys. Lett. 88, 181904 (2006)]
 Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO$_2$

- **2009** Laskowski et al. [Phys. Rev. B 79, 165209 (2009)]
 Large excitonic effects in CuMO$_2$, exciton binding energy at about 0.5 eV

- **2009** Pellicer-Porres et al. [Semicond. Sci. Technol. 24, 015002 (2009)]
 Large polaron constant in CuAlO$_2$.

- **2009** Snure and Tiwari [Appl. Phys. Lett. 91, 092123 (2007)]
 First production of CuBO$_2$ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. 21, 4568 (2009)].
Delafossite transparent conductive oxides

Literature - recent results

- **2001** Yanagi et al. [J. of Appl. Phys. **88**, 4159 (2001)]
 Photoemission spectra for CuAlO$_2$, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap

 B3LYP calculations — there is no trace of low-energy indirect bandgaps

 Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO$_2$

 Large excitonic effects in CuMO$_2$, exciton binding energy at about 0.5 eV.

 Large polaron constant in CuAlO$_2$.

 First production of CuBO$_2$ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. **21**, 4568 (2009)].
2001 Yanagi et al. [J. of Appl. Phys. 88, 4159 (2001)]
Photoemission spectra for CuAlO$_2$, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap.

2002 Robertson et al. [Thin Solid Films 411, 96 (2002)]
B3LYP calculations — there is no trace of low-energy indirect bandgaps.

2006 Pellicer-Porres et al. [Appl. Phys. Lett. 88, 181904 (2006)]
Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO$_2$.

Large excitonic effects in CuMO$_2$, exciton binding energy at about 0.5 eV.

2009 Pellicer-Porres et al. [Semicond. Sci. Technol. 24, 015002 (2009)]
Large polaron constant in CuAlO$_2$.

First production of CuBO$_2$ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. 21, 4568 (2009)].
Literature - recent results

2001 Yanagi et al. [J. of Appl. Phys. 88, 4159 (2001)]
Photoemission spectra for CuAlO$_2$, the fundamental band gap is about 3.5eV, *inconsistent* with the optically reported indirect gap.

2002 Robertson et al. [Thin Solid Films 411, 96 (2002)]
B3LYP calculations — there is no trace of low-energy indirect bandgaps.

2006 Pellicer-Porres et al. [Appl. Phys. Lett. 88, 181904 (2006)]
Single crystals instead of thin films, indirect gap at about 3eV in single crystals CuAlO$_2$

Large excitonic effects in CuMO$_2$, exciton binding energy at about 0.5 eV.

2009 Pellicer-Porres et al. [Semicond. Sci. Technol. 24, 015002 (2009)]
Large polaron constant in CuAlO$_2$.

First production of CuBO$_2$ delafossite: large p-type conductivity. BUT the geometry was inconsistent (more than 10% off) with theoretical calculations [Scanlon et al. Chem. of Mat. 21, 4568 (2009)].
Problem: the Kohn-Sham band gap underestimation

- Standard DFT yields excellent structural properties...
- ... but energy gaps are, at best half of experiment
- Hybrid functionals solve to a large extent this problem...
- ... but their accuracy is very "system-dependent"

van Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)
Problem: the Kohn-Sham band gap underestimation

- Standard DFT yields excellent structural properties...
- ... but energy gaps are, at best half of experiment
- Hybrid functionals solve to a large extent this problem...
- ... but their accuracy is very “system-dependent”

van Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)
Problem: the Kohn-Sham band gap underestimation

- Standard DFT yields excellent structural properties...
- ... but energy gaps are, at best half of experiment
- Hybrid functionals solve to a large extent this problem...
- ... but their accuracy is very “system-dependent”

van Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)
Standard DFT yields excellent structural properties...

... but energy gaps are, at best half of experiment

Hybrid functionals solve to a large extent this problem...

... but their accuracy is very “system-dependent”

van Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)
In many materials, perturbative \textit{GW} correct the LDA band gaps, and gives reasonable agreement with experimental data.

In most metal oxides, however, quasiparticle wavefunctions are badly reproduced by LDA wavefunctions, so the \textit{GW} correction is too small.

van Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)
Real solution: self-consistent GW

A recipe to perform self-consistent GW has been given by Faleev, Kotani, and van Schilfgaarde. It is based on a procedure to make the self-energy static and Hermitian.

We use a similar approach, that turns out to yield very similar results, but is lighter from the computational point of view:

- start from an LDA band-structure and perform a self-consistent COHSEX (Coulomb Hole and Screened Exchange) calculation.
- add dynamical effects by performing a perturbative GW step on top of the self-consistent COHSEX.

This approach gives excellent results for many complex compounds, such as instance CuIn(S,Se)$_2$, Cu$_2$O, VO$_2$.

Technical problem: convergence with bands

- Production GW codes require sums over virtual states. To speed-up convergence we use the trick of Bruneval and Gonze.
- Not just a technical point. Without any “tricks” the convergence is very slow, leading to an underestimation of the band gaps.
- Using a value of 9.5 Ha, the results are independent of the number of bands, so we could do our calculations using only 200 bands for CuMO$_2$.

Technical problem: convergence with bands

- Production GW codes require sums over virtual states. To speed-up convergence we use the trick of Bruneval and Gonze.
- Not just a technical point. Without any “tricks” the convergence is very slow, leading to an underestimation of the band gaps.
- Using a value of 9.5 Ha, the results are independent of the number of bands, so we could do our calculations using only 200 bands for CuMO$_2$.

Technical problem: convergence with bands

- Production GW codes require sums over virtual states. To speed-up convergence we use the trick of Bruneval and Gonze.
- Not just a technical point. Without any “tricks” the convergence is very slow, leading to an underestimation of the band gaps.
- Using a value of 9.5 Ha, the results are independent of the number of bands, so we could do our calculations using only 200 bands for CuMO$_2$.

Upon going from LDA to G_0W_0 to scGW, there is an upshift of the conduction band at Γ with respect to L.

Within scGW, the minimum of the conduction band is at L, the direct and indirect band gaps are almost identical.

Our results were confirmed by a recent, independent calculation reported by Christensen et al. Phys. Rev. B 81, 045203 (2010).

The scGW direct gap is more than 1 eV higher than experiment!
sc\textit{GW} corrections are strongly \(\mathbf{k} \)-dependent. No scissor operator possible.

Hybrids (HSE03) show a large difference with sc\textit{GW} in the conduction band, while the valence bands are very accurate.

LDA+U describes incorrectly both the gap and the band dispersion.
According to the experimental data, the polaron constant in CuAlO$_2$ is ~ 1.

In delafossites we have non negligible contribution of the lattice polarization to the electronic screening.

Lattice polarization effects can be included within GW, simply adding the ionic contribution to the dielectric matrix in the calculation of the screened potential W.

$$\varepsilon_{GG}(q, \omega) = \delta_{GG} + 4\pi P_{GG}(q, \omega) + 4\pi P_{lat}^{GG}(q, \omega)$$

Using the long wavelength contribution of the lattice polarizability $P_{00}^{lat}(q \to 0, \omega)$, and the Lyddane-Sachs-Teller relationship for the static case, a simple model for the lattice polarizability is derived from

- static dielectric constant ε_0
- low-frequency dielectric constant ε_∞
- zone center optical frequencies ω_{LO} and ω_{TO}

Experimental data are for optical gap: exciton binding energy ~ 0.5 eV

The agreement of LDA+U and HSE06 hybrid functional to the experiment is accidental

ScGW shows that the band gaps are much higher – no trace of an small indirect gap

Agreement with experiment can only be achieved by the addition of lattice polarization effects.
Experimental data are for optical gap: exciton binding energy ~ 0.5 eV.

The agreement of LDA+U and HSE06 hybrid functional to the experiment is accidental.

ScGW shows that the band gaps are much higher – no trace of an small indirect gap.

Agreement with experiment can only be achieved by the addition of lattice polarization effects.
Experimental data are for optical gap: exciton binding energy ~ 0.5 eV

The agreement of LDA+U and HSE06 hybrid functional to the experiment is accidental

ScGW shows that the band gaps are much higher – no trace of an small indirect gap

Agreement with experiment can only be achieved by the addition of lattice polarization effects.
Results: CuAlO$_2$ band gaps

- Experimental data are for optical gap: exciton binding energy ~ 0.5 eV
- The agreement of LDA+U and HSE06 hybrid functional to the experiment is accidental
- ScGW shows that the band gaps are much higher – no trace of an small indirect gap
- Agreement with experiment can only be achieved by the addition of lattice polarization effects.
The direct to indirect band gap difference increases on increasing the M atomic number.

Apart from the CuBO$_2$, scGW adds to the LDA direct band gap a constant amount of about 2.5 eV.
scGW solves to a large extent the problem of electron correlation for many transition metal oxides.

- Convergence with the number of empty bands has to be carefully checked.
- GW corrections can be k-dependent: no scissor operator, please!

scGW calculations show that the band gaps of delafossite CuMO$_2$ are very wide.

- There is no trace of a low-energy indirect band gap. LDA+U and hybrid functionals must be used with care.
- Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
Delafossites – conclusion

- scGW solves to a large extent the problem of electron correlation for many transition metal oxides.
 - Convergence with the number of empty bands has to be carefully checked.
 - GW corrections can be k-dependent: no scissor operator, please!

- scGW calculations show that the band gaps of delafossite CuMO$_2$ are very wide.
 - There is no trace of a low-energy indirect band gap.
 - LDA+U and hybrid functionals must be used with care.

- Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
scGW solves to a large extent the problem of electron correlation for many transition metal oxides.

- Convergence with the number of empty bands has to be carefully checked.
- \(GW\) corrections can be \(k\)-dependent: no scissor operator, please!

scGW calculations show that the band gaps of delafossite CuMO2 are very wide.

- There is no trace of a low-energy indirect band gap.
- LDA+U and hybrid functionals must be used with care.

Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
sc\(GW\) solves to a large extent the problem of electron correlation for many transition metal oxides.

- Convergence with the number of empty bands has to be carefully checked.
- \(GW\) corrections can be \(k\)-dependent: no scissor operator, please!

sc\(GW\) calculations show that the band gaps of delafossite CuMO\(_2\) are very wide.

- There is no trace of a low-energy indirect band gap.
- LDA+U and hybrid functionals must be used with care.

Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
sc\textit{GW} solves to a large extent the problem of electron correlation for many transition metal oxides.

- Convergence with the number of empty bands has to be carefully checked.
- \textit{GW} corrections can be k-dependent: no scissor operator, please!

sc\textit{GW} calculations show that the band gaps of delafossite CuMO2 are very wide.

- There is no trace of a low-energy indirect band gap.
- LDA+U and hybrid functionals must be used with care.

Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
scGW solves to a large extent the problem of electron correlation for many transition metal oxides.

- Convergence with the number of empty bands has to be carefully checked.
- GW corrections can be k-dependent: no scissor operator, please!

scGW calculations show that the band gaps of delafossite CuMO$_2$ are very wide.

- There is no trace of a low-energy indirect band gap.
- LDA+U and hybrid functionals must be used with care.

Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
Delafossites – conclusion

- scGW solves to a large extent the problem of electron correlation for many transition metal oxides.
 - Convergence with the number of empty bands has to be carefully checked.
 - GW corrections can be k-dependent: no scissor operator, please!

- scGW calculations show that the band gaps of delafossite CuMO$_2$ are very wide.
 - There is no trace of a low-energy indirect band gap.
 - LDA+U and hybrid functionals must be used with care.

- Lattice polarization effects are very important, and their inclusion leads to a good agreement with experimental data.
What is the mixing of Hybrid functionals

What is the mixing of Hybrid functionals

Hybrid functionals

The experimental values of some quantities lie often between they Hartree-Fock and DFT (LDA or GGA) values. So, we can try to mix, or to “hybridize” both theories.

1. Write an energy functional:

\[E_{xc} = aE^{\text{Fock}}[\varphi_i] + (1 - a)E^{\text{DFT}}[n] \]

2. Minimize energy functional w.r.t. to the orbitals:

\[\nu_{xc}(r, r') = a\nu^{\text{Fock}}(r, r') + (1 - a)\nu^{\text{DFT}}(r) \]

Note: for pure density functionals, minimizing w.r.t. the orbitals or w.r.t. the density gives the same, as:

\[\frac{\delta F[n]}{\delta \varphi^*} = \int \frac{\delta F[n]}{\delta n} \frac{\delta n}{\delta \varphi^*} = \frac{\delta F[n]}{\delta n} \varphi \]
What is the mixing of Hybrid functionals?

What is the mixing parameter?

Let us look at the quasi-particle equation:

\[
\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(r) + v_H(r) \right] \phi_{i\text{QP}}(r) + \int d^3 r' \Sigma(r, r'; \varepsilon_{i\text{QP}}) \phi_{i\text{QP}}(r') = \varepsilon_{i\text{QP}} \phi_{i\text{QP}}(r')
\]

And now let us look at the different approximations:

- **COHSEX:**
 \[
 \Sigma = - \sum_{i}^{\text{occ}} \phi_{i\text{QP}}(r) \phi_{i\text{QP}}(r') W(r, r'; \omega = 0) + \delta(r - r') \Sigma_{\text{COH}}(r)
 \]

- **Hybrids**
 \[
 \Sigma = - \sum_{i}^{\text{occ}} \phi_{i\text{QP}}(r) \phi_{i\text{QP}}(r') a v(r - r') + \delta(r - r')(1 - a) v^{\text{DFT}}(r)
 \]

So, we infer that \(a \sim 1/\epsilon_\infty \)!
What is the mixing of Hybrid functionals

Does it work \((a = 1/\epsilon_{\infty}) \)?

Optimal mixing obtained with a PBE0 form.
What is the mixing of Hybrid functionals

Does it work \((a = 1/\epsilon_{\infty}) \)?

![Graph showing theoretical and experimental gaps for different functionals](image)

Errors: PBE (46%), Hartree-Fock (230%), PBE0 (27%), PBE0_{\epsilon_{\infty}} (16.53%)
Can we do better?

Screening is related to the gap. So, if we have an estimator of the gap of the material, we can also get an estimator of the dielectric constant.

There are several local estimators on the market:

- $G = \frac{1}{8} |\nabla n|^2 / n^2$ (Gutle et al. 1999)
- $|\nabla n| / n$ (Heyd et al. 2003; Krukau et al. 2008)
- $\tau_W = |\nabla n|^2 / 8n$ (Jaramillo et al. 2003)

These are however, local estimators and we need a global estimator. The solution is averaging. We follow the idea of the Tran and Blaha meta-GGA and define

$$\bar{g} = \frac{1}{V_{\text{cell}}} \int_{\text{cell}} d^3 r \sqrt{\frac{|\nabla n(r)|}{n(r)}}$$

F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)
What is the mixing of Hybrid functionals

Is there a correlation?

Fit: $-1.00778 + 1.10507 \times \bar{g}$. Error in the gaps: 14.37%

Can one also do it with HSE?
Results - Summary

What is the mixing of Hybrid functionals?

<table>
<thead>
<tr>
<th></th>
<th>exp.</th>
<th>PBE</th>
<th>HF+c</th>
<th>PBE0</th>
<th>PBE0ϵ_{∞}</th>
<th>PBE0mix</th>
<th>HSE06</th>
<th>HSE0mix</th>
<th>TB09</th>
<th>G$_0$</th>
<th>W$_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>14.20</td>
<td>8.65</td>
<td>18.45</td>
<td>11.06</td>
<td>14.35</td>
<td>12.98</td>
<td>10.31</td>
<td>12.11</td>
<td>13.91</td>
<td>13.28</td>
<td></td>
</tr>
<tr>
<td>Kr</td>
<td>11.60</td>
<td>7.27</td>
<td>16.04</td>
<td>9.41</td>
<td>11.75</td>
<td>10.48</td>
<td>8.67</td>
<td>9.78</td>
<td>10.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xe</td>
<td>9.80</td>
<td>6.25</td>
<td>13.79</td>
<td>8.10</td>
<td>9.53</td>
<td>8.48</td>
<td>7.39</td>
<td>7.99</td>
<td>8.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.48</td>
<td>4.17</td>
<td>12.05</td>
<td>6.06</td>
<td>5.48</td>
<td>5.92</td>
<td>5.33</td>
<td>5.71</td>
<td>4.93</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>1.17</td>
<td>0.59</td>
<td>6.00</td>
<td>1.78</td>
<td>0.98</td>
<td>1.07</td>
<td>1.16</td>
<td>1.21</td>
<td>1.17</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>0.74</td>
<td>0.00</td>
<td>5.49</td>
<td>1.31</td>
<td>0.32</td>
<td>0.68</td>
<td>0.77</td>
<td>0.82</td>
<td>0.85</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LiCl</td>
<td>9.40</td>
<td>6.41</td>
<td>14.94</td>
<td>8.50</td>
<td>9.28</td>
<td>8.69</td>
<td>7.80</td>
<td>8.41</td>
<td>8.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>7.83</td>
<td>4.77</td>
<td>15.24</td>
<td>7.27</td>
<td>8.06</td>
<td>7.67</td>
<td>6.53</td>
<td>7.41</td>
<td>7.17</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td>SiC</td>
<td>2.40</td>
<td>1.34</td>
<td>8.18</td>
<td>2.95</td>
<td>2.28</td>
<td>2.33</td>
<td>2.24</td>
<td>2.36</td>
<td>2.28</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>6.25</td>
<td>4.41</td>
<td>13.06</td>
<td>6.50</td>
<td>6.25</td>
<td>6.60</td>
<td>5.75</td>
<td>6.29</td>
<td>5.85</td>
<td>6.10</td>
<td></td>
</tr>
<tr>
<td>GaN</td>
<td>3.20</td>
<td>1.72</td>
<td>10.29</td>
<td>3.64</td>
<td>3.07</td>
<td>3.52</td>
<td>2.96</td>
<td>3.39</td>
<td>2.81</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>1.52</td>
<td>0.63</td>
<td>6.81</td>
<td>2.09</td>
<td>1.04</td>
<td>1.56</td>
<td>1.47</td>
<td>1.61</td>
<td>1.64</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>AlP</td>
<td>2.45</td>
<td>1.58</td>
<td>7.40</td>
<td>2.93</td>
<td>2.24</td>
<td>2.23</td>
<td>2.27</td>
<td>2.32</td>
<td>2.32</td>
<td>2.44</td>
<td></td>
</tr>
<tr>
<td>ZnS</td>
<td>3.91</td>
<td>2.11</td>
<td>10.06</td>
<td>4.00</td>
<td>3.38</td>
<td>4.25</td>
<td>3.34</td>
<td>3.92</td>
<td>3.66</td>
<td>3.29</td>
<td></td>
</tr>
<tr>
<td>CdS</td>
<td>2.42</td>
<td>1.17</td>
<td>8.56</td>
<td>2.87</td>
<td>2.25</td>
<td>3.15</td>
<td>2.23</td>
<td>2.76</td>
<td>2.66</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>AlN</td>
<td>6.28</td>
<td>4.16</td>
<td>12.94</td>
<td>6.25</td>
<td>5.39</td>
<td>6.29</td>
<td>5.53</td>
<td>6.08</td>
<td>5.55</td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>10.30</td>
<td>6.02</td>
<td>16.75</td>
<td>8.63</td>
<td>9.10</td>
<td>10.53</td>
<td>7.89</td>
<td>9.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>1.29</td>
<td>0.87</td>
<td>7.90</td>
<td>2.09</td>
<td>1.25</td>
<td>1.63</td>
<td>1.42</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>3.44</td>
<td>0.90</td>
<td>11.21</td>
<td>3.26</td>
<td>2.74</td>
<td>4.90</td>
<td>2.57</td>
<td>4.26</td>
<td>2.68</td>
<td>2.51</td>
<td></td>
</tr>
</tbody>
</table>

Δ (%) – 47.32 250.23 29.42 16.53 14.37 16.92 10.36 9.85 11.25

Other properties (structural properties, band dispersions, etc.)?
Hybrids – Conclusions

The ab-initio determination of the mixing constant is:

- Cheap and easy to calculate.
- Physically motivated.
- Improves considerably electronic-gaps obtained with hybrid functionals.
- Both small-gap and large-gap (rare-gases) materials can be well-described.
- It is an energy functional – all properties can be in principle calculated.
- The solution to the size-consistency problem not yet implemented and tried.
- Need to obtain more properties to get a better working knowledge of the functional.
- Still has problems with d-electron systems.
The ab-initio determination of the mixing constant is:

- Cheap and easy to calculate.
- Physically motivated.
- Improves considerably electronic-gaps obtained with hybrid functionals.
- Both small-gap and large-gap (rare-gases) materials can be well-described.
- It is an energy functional – all properties can be in principle calculated.
- The solution to the size-consistency problem not yet implemented and tried.
- Need to obtain more properties to get a better working knowledge of the functional.
- Still has problems with d-electron systems.
What is the mixing of Hybrid functionals

Hybrids – Conclusions

The ab-initio determination of the mixing constant is:

- Cheap and easy to calculate.
- Physically motivated.
- Improves considerably electronic-gaps obtained with hybrid functionals.
- Both small-gap and large-gap (rare-gases) materials can be well-described.
- It is an energy functional – all properties can be in principle calculated.
- The solution to the size-consistency problem not yet implemented and tried.
- Need to obtain more properties to get a better working knowledge of the functional.
- Still has problems with d-electron systems.
Thanks to all collaborators! Thank you!

LSI – École Polytechnique
- Lucia Reining
- Silvana Botti
- Julien Vidal

LPMCN – Université Lyon 1
- Fabio Trani
- Guilherme Vilhena
- David Kammerlander

CEA – Saclay
- Fabien Bruneval

http://www.tddft.org/bmg